28 research outputs found

    Electrode Materials, Thermal Annealing Sequences, and Lateral/Vertical Phase Separation of Polymer Solar Cells from Multiscale Molecular Simulations

    Get PDF
    The nanomorphologies of the bulk heterojunction (BHJ) layer of polymer solar cells are extremely sensitive to the electrode materials and thermal annealing conditions. In this work, the correlations of electrode materials, thermal annealing sequences, and resultant BHJ nanomorphological details of P3HT:PCBM BHJ polymer solar cell are studied by a series of large-scale, coarse-grained (CG) molecular simulations of system comprised of PEDOT:PSS/P3HT:PCBM/Al layers. Simulations are performed for various configurations of electrode materials as well as processing temperature. The complex CG molecular data are characterized using a novel extension of our graph-based framework to quantify morphology and establish a link between morphology and processing conditions. Our analysis indicates that vertical phase segregation of P3HT:PCBM blend strongly depends on the electrode material and thermal annealing schedule. A thin P3HT-rich film is formed on the top, regardless of bottom electrode material, when the BHJ layer is exposed to the free surface during thermal annealing. In addition, preferential segregation of P3HT chains and PCBM molecules toward PEDOT:PSS and Al electrodes, respectively, is observed. Detailed morphology analysis indicated that, surprisingly, vertical phase segregation does not affect the connectivity of donor/acceptor domains with respective electrodes. However, the formation of P3HT/PCBM depletion zones next to the P3HT/PCBM-rich zones can be a potential bottleneck for electron/hole transport due to increase in transport pathway length. Analysis in terms of fraction of intra- and interchain charge transports revealed that processing schedule affects the average vertical orientation of polymer chains, which may be crucial for enhanced charge transport, nongeminate recombination, and charge collection. The present study establishes a more detailed link between processing and morphology by combining multiscale molecular simulation framework with an extensive morphology feature analysis, providing a quantitative means for process optimization

    Sub-nanometre resolution imaging of polymer-fullerene photovoltaic blends using energy-filtered scanning electron microscopy

    Get PDF
    The resolution capability of the scanning electron microscope has increased immensely in recent years, and is now within the sub-nanometre range, at least for inorganic materials. An equivalent advance has not yet been achieved for imaging the morphologies of nanostructured organic materials, such as organic photovoltaic blends. Here we show that energy-selective secondary electron detection can be used to obtain high-contrast, material-specific images of an organic photovoltaic blend. We also find that we can differentiate mixed phases from pure material phases in our data. The lateral resolution demonstrated is twice that previously reported from secondary electron imaging. Our results suggest that our energy-filtered scanning electron microscopy approach will be able to make major inroads into the understanding of complex, nano-structured organic materials

    Automated analysis protocol for high resolution BOLD-fMRI mapping of the fingertip somatotopy in brodmann area 3b.

    No full text
    Background: To introduce a standardized and automatized method for functional MRI (fMRI) examinations of the cortical sensory somatotopy in large samples for investigations of the fingertip somatotopy in the primary somatosensory cortex. Methods: At 3 Tesla, T2* (spin-spin relaxation time) weighted images (gradient-echo echo planar imaging, voxel size 1.5 x 1.5 x 2 mm(3)) were acquired during stimulation of the finger tips for thumb, index and middle finger on both hands, in a group of 18 healthy participants. In addition, structural T1 weighted (magnetization prepared rapid gradient echo, isotropic voxel size 1 mm) and MR-angiography (time of flight, voxel size 0.26 x 0.26 x 0.5 mm(3)) images were recorded. Boundary based register served to combine movement correction and registration in FreeSurfer Functional analysis stream (FS-Fast), resulting in fine scale corrections, as revealed with FSL Possum (FSL FMRIB Software Library Physics-Oriented Simulated Scanner for Understanding MRI) simulations. Automated data analysis was achieved by inclusion of cytoarchitectonic probability maps for calculation of functional activation in Brodmann area 3b. Draining vessel artifacts were identified using the peak value approach and the MR-angiography. Distances were computed as the shortest connection within the gray matter. Results: The fMRI somatotopic maps agreed with the expected fingertip somatotopy in 63% of the investigated subjects, an improvement of 34% compared with FS-Fast. Artifacts have been removed completely. Adjacent fingertips showed average distances of 8+/-4.3 mm, and between thumb and middle finger 13.4+/-4.8 mm was found. Distances for both hands were similar as expected from the characteristics of the fingertip spatial tactile resolution. Conclusion: The introduced evaluation procedure allowed automated analysis of the fingertip representation in excellent agreement with preceding results

    Nanoporous aluminum oxide membranes for filtration and biofunctionalization

    No full text
    Nanoporous aluminum oxide membranes with high open porosity are prepared by anodic oxidation. Conventional self-supporting as well as mechanically stabilized nanoporous membranes are produced from aluminum plates and microimprinted aluminum foils, respectively. The mechanically stabilized membranes are characterized by very thin membrane parts stabilized by surrounding thick bridges. The minimal thickness of these thin membranes with open pores on both sides is 1 mu m, with a mean pore size of the parallel open pores of 185 nm. With these two kinds of membrane the flow rates for cross filtration can be tuned over a wide range. With the mechanically stabilized membranes, substantially higher flow rates are achieved and experiments that cannot be performed with thicker membranes become possible. The biofunctionalization of the pore walls with archaebacterial tetraether lipids is realized and proved using aminated semiconductor nanocrystals. The lipid layer deposited on the pore walls also changes the filtration properties
    corecore