91 research outputs found

    What distinguishes 100-year precipitation extremes over central European river catchments from more moderate extreme events?

    Get PDF
    Historical extreme flooding events in central European river catchments caused high socioeconomic impacts. Previous studies have analysed single events in detail but have not focused on a robust analysis of the underlying extreme precipitation events in general, as historical events are too rare for a robust assessment of their generic dynamical causes. This study tries to fill this gap by analysing a set of realistic daily 100-year large-scale precipitation events over five major European river catchments with the help of operational ensemble prediction data from the ECMWF. The dynamical conditions during such extreme events are investigated and compared to those of more moderate extreme events (20 to 50 year); 100-year precipitation events are generally associated with an upper-level cutoff low over central Europe in combination with a surface cyclone southeast of the specific river catchment. The 24 h before the event is decisive for the exact location of this surface cyclone, depending on the location and velocity of the upper-level low over western Europe. The difference between 100-year and more moderate extreme events varies from catchment to catchment. Dynamical mechanisms such as an intensified upper-level cutoff low and surface cyclone are the main drivers distinguishing 100-year events in the Oder and Danube catchments, whereas thermodynamic mechanisms such as a higher moisture supply in the lower troposphere east of the specific river catchment are more relevant in the Elbe and Rhine catchments. For the Weser and Ems catchment, differences appear in both dynamical and thermodynamic mechanisms

    Processes determining heat waves across different European climates

    Get PDF
    This study presents a comprehensive analysis of processes determining heat waves across different climates in Europe for the period 1979–2016. Heat waves are defined using a percentile‐based index and the main processes quantified along trajectories are adiabatic compression by subsidence and local and remote diabatic processes in the upper and lower troposphere. This Lagrangian analysis is complemented by an Eulerian calculation of horizontal temperature advection. During typical summers in Europe, one or two heat waves occur, with an average duration of five days. Whereas high near‐surface temperatures over Scandinavia are accompanied by omega‐like blocking structures at 500 hPa, heat waves over the Mediterranean are connected to comparably flat ridges. Tracing air masses backwards from the heat waves, we identify three trajectory clusters with coherent thermodynamic characteristics, vertical motions, and geographic origins. In all regions, horizontal temperature advection is almost negligible. In two of the three clusters, subsidence in the free atmosphere is very important in establishing high temperatures near the surface, while the air masses in the third cluster are warmed primarily due to diabatic heating near the surface. Large interregional differences occur between the British Isles and western Russia. Over the latter region, near‐surface transport and diabatic heating appear to be very important in determining the intensity of the heat waves, whereas subsidence and adiabatic warming are of first‐order importance for the British Isles. Although the large‐scale pattern is quasistationary during heat wave days, new air masses are entrained steadily into the lower troposphere during the life cycle of a heat wave. Overall, the results of the present study provide a guideline as to which processes and diagnostics weather and climate studies should focus on to understand the severity of heat waves

    Extratropical Cyclones in Idealized Simulations of Changed Climates

    Get PDF
    Cyclones are a key element of extratropical weather and frequently lead to extreme events like wind storms and heavy precipitation. Understanding potential changes of cyclone frequency and intensity is thus essential for a proper assessment of climate change impacts. Here the behavior of extratropical cyclones under strongly varying climate conditions is investigated using idealized climate model simulations in an aquaplanet setup. A cyclone tracking algorithm is applied to assess various statistics of cyclone properties such as intensity, size, lifetime, displacement velocity, and deepening rates. In addition, a composite analysis of intense cyclones is performed. In general, the structure of extratropical cyclones in the idealized simulations is very robust, and changes in major cyclone characteristics are relatively small. Median cyclone intensity, measured in terms of minimum sea level pressure and lower-tropospheric relative vorticity, has a maximum in simulations with global mean temperature slightly warmer than present-day Earth, broadly consistent with the behavior of the eddy kinetic energy analyzed in previous studies. Maximum deepening rates along cyclone tracks behave similarly and are in agreement with linear quasigeostrophic growth rates if the effect of latent heat release on the stratification is taken into account. In contrast to moderate cyclones, the relative vorticity of intense cyclones continues to increase with warming to substantially higher temperatures, and this is associated with enhanced lower-tropospheric potential vorticity anomalies likely caused by increased diabatic heating. Moist processes may, therefore, lead to the further strengthening of intense cyclones in warmer climates even if cyclones weaken on average.National Science Foundation (U.S.) (GS-1148594

    Future changes in North Atlantic winter cyclones in CESM-LE – Part 1: Cyclone intensity, potential vorticity anomalies, and horizontal wind speed

    Get PDF
    Strong low-level winds associated with extratropical cyclones can have substantial impacts on society. The wind intensity and the spatial distribution of wind maxima may change in a warming climate; however, the involved changes in cyclone structure and dynamics are not entirely clear. Here, such structural changes of strong North Atlantic cyclones in a warmer climate close to the end of the current century are investigated with storm-relative composites based on Community Earth System Model Large Ensemble (CESM-LE) simulations. Furthermore, a piecewise potential vorticity inversion is applied to associate such changes in low-level winds to changes in potential vorticity (PV) anomalies at different levels. Projected changes in cyclone intensity are generally rather small. However, using cyclone-relative composites, we identify an extended wind footprint southeast of the center of strong cyclones, where the wind speed tends to intensify in a warmer climate. Both an amplified low-level PV anomaly driven by enhanced diabatic heating and a dipole change in upper-level PV anomalies contribute to this wind intensification. On the contrary, wind changes associated with lower- and upper-level PV anomalies mostly compensate for each other upstream of the cyclone center. Wind changes at upper levels are dominated by changes in upper-level PV anomalies and the background flow. Altogether, our results indicate that a complex interaction of enhanced diabatic heating and altered non-linear upper-tropospheric wave dynamics shape future changes in near-surface winds in North Atlantic cyclones

    The climatology and nature of warm-season convective cells in cold-frontal environments over Germany

    Get PDF
    Cold fronts provide an environment particularly favourable for convective initiation in the mid-latitudes and can also be associated with convective hazards such as flooding, wind, hail and lightning. We build a climatology of cold-frontal convective cells between 2007–2016 for April–September in a cell-front distance framework by combining a radar-based cell detection and tracking dataset and automatic front detection methods applied to reanalysis data. We find that on average around twice as many cells develop on cold-frontal cell days compared to non-cold-frontal cell days. Using the 700 hPa level as a reference point, we show the maximum cell frequency is 350–400 km ahead of the 700 hPa front, which is marginally ahead of the typical surface front location. The 700 hPa front location marks the minimum cell frequency and a clear shift in regime between cells, with a weakened diurnal cycle on the warm side of the 700 hPa cold front and strongly diurnally driven cells on the cold side of the 700 hPa front. High cell frequency is found several hundreds of kilometres ahead of the surface front, and cells in this region are most likely to be associated with mesocyclones, intense convective cores and lightning. Namely, mesocyclones were detected in around 5.0 % of pre-surface-frontal cells compared to only 1.5 % of non-cold-frontal cells. The findings in this study are an important step towards a better understanding of cold-frontal convection climatology and links between cold fronts and convective hazards

    Unravelling the transport of moisture into the Saharan Air Layer using passive tracers and isotopes

    Get PDF
    The subtropical free troposphere plays a critical role in the radiative balance of the Earth. However, the complex interactions controlling moisture in this sensitive region and, in particular, the relative importance of long-range transport compared to lower-tropospheric mixing, remain unclear. This study uses the regional COSMO model equipped with stable water isotopes and passive water tracers to quantify the contributions of different evaporative sources to the moisture and its stable isotope signals in the eastern subtropical North Atlantic free troposphere. In summer, this region is characterized by two alternating large-scale circulation regimes: (i) dry, isotopically depleted air from the upper-level extratropics, and (ii) humid, enriched air advected from Northern Africa within the Saharan Air Layer (SAL) consisting of a mixture of moisture of diverse origin (tropical and extratropical North Atlantic, Africa, Europe, the Mediterranean). This diversity of moisture sources in regime (ii) arises from the convergent inflow at low levels of air from different neighbouring regions into the Saharan heat low (SHL), where it is mixed and injected by convective plumes into the large-scale flow aloft, and thereafter expelled to the North Atlantic within the SAL. Remarkably, this regime is associated with a large contribution of moisture that evaporated from the North Atlantic, which makes a detour through the SHL and eventually reaches the 850–550 hPa layer above the Canaries. Moisture transport from Europe via the SHL to the same layer leads to the strongest enrichment in heavy isotopes (δ2H correlates most strongly with this tracer). The vertical profiles over the North Atlantic show increased humidity and δ2H and reduced static stability in the 850–550 hPa layer, and smaller cloud fraction in the boundary layer in regime (ii) compared to regime (i), highlighting the key role of moisture transport through the SHL in modulating the radiative balance in this region

    Response of moist and dry processes in atmospheric blocking to climate change

    Get PDF
    Weather extremes are often associated with atmospheric blocking, but how the underlying physical processes leading to blocking respond to climate change is not yet fully understood. Here we track blocks as upper-level negative potential vorticity (PV) anomalies and apply a Lagrangian analysis to 100 years of present-day (∼2000) and future (∼2100, under the RCP8.5 scenario) climate simulations restarted from the Community Earth System Model–Large Ensemble Project runs (CESM-LENS) to identify different physical processes and quantify how their relative importance changes in a warmer and more humid climate. The trajectories reveal two contrasting airstreams that both contribute to the formation and maintenance of blocking: latent heating in strongly ascending airstreams (moist processes) and quasi-adiabatic flow near the tropopause with weak radiative cooling (dry processes). Both are reproduced remarkably well when compared against ERA-Interim reanalysis, and their relative importance varies regionally and seasonally. The response of blocks to climate change is complex and differs regionally, with a general increase in the importance of moist processes due to stronger latent heating (+1 K in the median over the Northern Hemisphere) and a larger fraction (+15%) of strongly heated warm conveyor belt air masses, most pronounced over the storm tracks. Future blocks become larger (+7%) and their negative PV anomaly slightly intensifies (+0.8%). Using a Theil–Sen regression model, we propose that the increase in size and intensity is related to the increase in latent heating, resulting in stronger cross-isentropic transport of air with low PV into the blocking anticyclones. Our findings provide evidence that moist processes become more important for the large-scale atmospheric circulation in the midlatitudes, with the potential for larger and more intense blocks
    corecore