38 research outputs found

    At the dawn of the transcriptomic medicine

    Get PDF
    Impact statement This review describes the impact of transcriptomics on experimental biology and its integration into medical practice. Transcriptomics is an essential part of modern biomedical research based on highly sophisticated and reliable technology. Transcriptomics can aid clinical practice and improve the precision of clinical diagnoses and decision-making by complementing existing clinical best practice. The power of which will be increased when combined with genomic variation from genome wide association studies and next generation sequencing. We are witnessing the implementation of RNA-based technologies in clinical practice that will eventually lead to the establishment of transcriptional medicine as a routine tool in diagnosis. Progress in genomic analytical technologies has improved our possibilities to obtain information regarding DNA, RNA, and their dynamic changes that occur over time or in response to specific challenges. This information describes the blueprint for cells, tissues, and organisms and has fundamental importance for all living organisms. This review focuses on the technological challenges to analyze the transcriptome and what is the impact of transcriptomics on precision medicine. The transcriptome is a term that covers all RNA present in cells and a substantial part of it will never be translated into protein but is nevertheless functional in determining cell phenotype. Recent developments in transcriptomics have challenged the fundamentals of the central dogma of biology by providing evidence of pervasive transcription of the genome. Such massive transcriptional activity is challenging the definition of a gene and especially the term “pseudogene” that has now been demonstrated in many examples to be both transcribed and translated. We also review the common sources of biomaterials for transcriptomics and justify the suitability of whole blood RNA as the current optimal analyte for clinical transcriptomics. At the end of the review, a brief overview of the clinical implications of transcriptomics in clinical trial design and clinical diagnosis is given. Finally, we introduce the transcriptome as a target for modern drug development as a tool for extending our capacity for precision medicine in multiple diseases

    Regulatory SVA retrotransposons and classical HLA genotyped-transcripts associated with Parkinson’s disease

    Get PDF
    IntroductionParkinson’s disease (PD) is a neurodegenerative and polygenic disorder characterised by the progressive loss of neural dopamine and onset of movement disorders. We previously described eight SINE-VNTR-Alu (SVA) retrotransposon-insertion-polymorphisms (RIPs) located and expressed within the Human Leucocyte Antigen (HLA) genomic region of chromosome 6 that modulate the differential co-expression of 71 different genes including the HLA classical class I and class II genes in a Parkinson’s Progression Markers Initiative (PPMI) cohort.Aims and methodsIn the present study, we (1) reanalysed the PPMI genomic and transcriptomic sequencing data obtained from whole blood of 1521 individuals (867 cases and 654 controls) to infer the genotypes of the transcripts expressed by eight classical HLA class I and class II genes as well as DRA and the DRB3/4/5 haplotypes, and (2) examined the statistical differences between three different PD subgroups (cases) and healthy controls (HC) for the HLA and SVA transcribed genotypes and inferred haplotypes.ResultsSignificant differences for 57 expressed HLA alleles (21 HLA class I and 36 HLA class II alleles) up to the three-field resolution and four of eight expressed SVA were detected at p<0.05 by the Fisher’s exact test within one or other of three different PD subgroups (750 individuals with PD, 57 prodromes, 60 individuals who had scans without evidence of dopamine deficits [SWEDD]), when compared against a group of 654 HCs within the PPMI cohort and when not corrected by the Bonferroni test for multiple comparisons. Fourteen of 20 significant alleles were unique to the PD-HC comparison, whereas 31 of the 57 alleles overlapped between two or more different subgroup comparisons. Only the expressed HLA-DRA*01:01:01 and -DQA1*03:01:01 protective alleles (PD v HC), the -DQA1*03:03:01 risk (HC v Prodrome) or protective allele (PD v Prodrome), the -DRA*01:01:02 and -DRB4*01:03:02 risk alleles (SWEDD v HC), and the NR_SVA_381 present genotype (PD v HC) at a 5% homozygous insertion frequency near HLA-DPA1, were significant (Pc<0.1) after Bonferroni corrections. The homologous NR_SVA_381 insertion significantly decreased the transcription levels of HLA-DPA1 and HLA-DPB1 in the PPMI cohort and its presence as a homozygous genotype is a risk factor (Pc=0.012) for PD. The most frequent NR_SVA_381 insertion haplotype in the PPMI cohort was NR_SVA_381/DPA1*02/DPB1*01 (3.7%). Although HLA C*07/B*07/DRB5*01/DRB1*15/DQB1*06 was the most frequent HLA 5-loci phased-haplotype (n, 76) in the PPMI cohort, the NR_SVA_381 insertion was present in only six of them (8%).ConclusionsThese data suggest that expressed SVA and HLA gene alleles in circulating white blood cells are coordinated differentially in the regulation of immune responses and the long-term onset and progression of PD, the mechanisms of which have yet to be elucidated

    Longitudinal intronic RNA-Seq analysis of Parkinson's disease patients reveals disease-specific nascent transcription.

    Get PDF
    Transcriptomic studies usually focus on either gene or exon-based annotations, and only limited experiments have reported changes in reads mapping to introns. The analysis of intronic reads allows the detection of nascent transcription that is not influenced by steady-state RNA levels and provides information on actively transcribed genes. Here, we describe substantial intronic transcriptional changes in Parkinson's disease (PD) patients compared to healthy controls (CO) at two different timepoints; at the time of diagnosis (BL) and three years later (V08). We used blood RNA-Seq data from the Parkinson's Progression Markers Initiative (PPMI) cohort and identified significantly changed transcription of intronic reads only in PD patients during this follow-up period. In CO subjects, only nine transcripts demonstrated differentially expressed introns between visits. However, in PD patients, 4873 transcripts had differentially expressed introns at visit V08 compared to BL, many of them in genes previously associated with neurodegenerative diseases, such as LRRK2, C9orf72, LGALS3, KANSL1AS1, and ALS2. In addition, at the time of diagnosis (BL visit), we identified 836 transcripts (e.g. SNCA, DNAJC19, PRRG4) and at visit V08, 2184 transcripts (e.g. PINK1, GBA, ALS2, PLEKHM1) with differential intronic expression specific to PD patients. In contrast, reads mapping to exonic regions demonstrated little variation indicating highly specific changes only in intronic transcription. Our study demonstrated that PD is characterized by substantial changes in the nascent transcription, and description of these changes could help to understand the molecular pathology underpinning this disease

    Longitudinal intronic RNA-Seq analysis of Parkinson’s Disease patients reveals disease-specific nascent transcription

    Get PDF
    AbstractTranscriptomic studies usually focus on either gene or exon-based annotations, and only limited experiments have reported changes in reads mapping to introns. The analysis of intronic reads allows the detection of nascent transcription that is not influenced by steady - state RNA levels and provides information on actively transcribed genes. Here we describe substantial intronic transcriptional changes in Parkinson’s Disease (PD) patients compared to healthy controls (CO) at two different timepoints; at the time of diagnosis (BL) and three years later (V08). We used blood RNA-Seq data from the Parkinson’s Progression Markers Initiative (PPMI) cohort and identified significantly changed transcription of intronic reads only in PD patients during this follow up period. In CO subjects, only nine transcripts demonstrated differentially expressed introns between visits. However, in PD patients 4,873 transcripts had differentially expressed introns at visit V08 compared to BL, many of them in genes previously associated with neurodegenerative diseases, such as LRRK2, C9orf72, LGALS3, KANSL1AS1 and ALS2. In addition, at the time of diagnosis (BL visit) we identified 836 transcripts (e.g. SNCA, DNAJC19, PRRG4) and at visit V08 2,184 transcripts (e.g. PINK1, GBA, ALS2, PLEKHM1) with differential intronic expression specific to PD patients. In contrast, reads mapping to exonic regions demonstrated little variation indicating highly specific changes only in intronic transcription. Our study demonstrated that Parkinson’s disease is characterized by substantial changes in the nascent transcription and description of these changes could help to understand the molecular pathology underpinning this disease.Impact statementTranscriptomic studies in most cases describe the steady state changes of the cellular RNA combined with signals from newly synthesised RNA or nascent RNA. Nascent RNA reflects dynamic alterations in the cellular transcriptome and improves the resolution of RNA-Seq analysis. In the present study, we describe the changes in nascent RNA transcription in Parkinson’s disease by using intronic RNA-Seq analysis. We compared transcriptome changes at the time of diagnosis and 3 years after the initial diagnosis. As a result, we were able to describe disease-specific time-dependent alterations in the nascent transcription in the blood of Parkinson’s patients illustrating another layer of the blood-based biomarkers that could be diagnostic of both risk and progression of Parkinson’s disease.</jats:sec

    Transcriptomic profiling of cerebrospinal fluid identifies ALS pathway enrichment and RNA biomarkers in MND individuals.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disorder and the most common form of motor neurone disease (MND) which is characterized by the damage and death of motor neurons in the brain and spinal cord of affected individuals. Due to the heterogeneity of the disease, a better understanding of the interaction between genetics and biochemistry with the identification of biomarkers is crucial for therapy development. In this study, we used cerebrospinal fluid (CSF) RNA-sequencing data from the New York Genome Center (NYGC) ALS Consortium and analyzed differential gene expression between 47 MND individuals and 29 healthy controls. Pathway analysis showed that the affected genes are enriched in many pathways associated with ALS, including nucleocytoplasmic transport, autophagy, and apoptosis. Moreover, we assessed differential expression on both gene- and transcript-based levels and demonstrate that the expression of previously identified potential biomarkers, including CAPG, CCL3, and MAP2, was significantly higher in MND individuals. Ultimately, this study highlights the transcriptomic composition of CSF which enables insights into changes in the brain in ALS and therefore increases the confidence in the use of CSF for biomarker development

    Non-reference genome transposable elements (TEs) have a significant impact on the progression of the Parkinson's disease

    Get PDF
    The pathophysiology of Parkinson's disease (PD) is a complex process of the interaction between genetic and environmental factors. Studies on the genetic component of PD have predominantly focused on single nucleotide polymorphisms (SNPs) using a cross-sectional case-control design in large genome-wide association studies. This approach while giving insight into a significant portion of the genetics of PD does not fully account for all the genetic components resulting in missing heritability. In this study, we approached this problem by focusing on the non-reference genome transposable elements (TEs) and their impact on the progression of PD using a longitudinal study design within the Parkinson's progression markers initiative (PPMI) cohort. We analyzed 2886 Alu repeats, 360 LINE1 and 128 SINE-VNTR-Alus (SVAs) that were called from the whole-genome sequence data which are not within the reference genome. The presence or absence of these non-reference TE variants is known as a retrotransposon insertion polymorphism, and measuring this polymorphism describes the impact of TEs on the traits. The variations for the presence or absence of the non-reference TE elements were modeled to align with the changes in the 114 outcome measures during the five-year follow-up period of the PPMI cohort. Linear mixed-effects models were used, and many TEs were found to have a highly significant effect on the longitudinal changes in the clinically important PD outcomes such as UPDRS subscale II, UPDRS total scores, and modified Schwab and England ADL scale. In addition, the progression of several imaging and functional measures, including the Caudate/Putamen ratio and levodopa equivalent daily dose (LEDD) were also significantly affected by the TEs. In conclusion, this study identified the overwhelming effect of the non-reference TEs on the progression of PD and is a good example of the impact the variations in the "junk DNA" have on complex diseases

    A polymorphic transcriptional regulatory domain in the amyotrophic lateral sclerosis risk gene <i>CFAP410</i> correlates with differential isoform expression.

    Get PDF
    We describe the characterisation of a variable number tandem repeat (VNTR) domain within intron 1 of the amyotrophic lateral sclerosis (ALS) risk gene CFAP410 (Cilia and flagella associated protein 410) (previously known as C21orf2), providing insight into how this domain could support differential gene expression and thus be a modulator of ALS progression or risk. We demonstrated the VNTR was functional in a reporter gene assay in the HEK293 cell line, exhibiting both the properties of an activator domain and a transcriptional start site, and that the differential expression was directed by distinct repeat number in the VNTR. These properties embedded in the VNTR demonstrated the potential for this VNTR to modulate CFAP410 expression. We extrapolated these findings in silico by utilisation of tagging SNPs for the two most common VNTR alleles to establish a correlation with endogenous gene expression. Consistent with in vitro data, CFAP410 isoform expression was found to be variable in the brain. Furthermore, although the number of matched controls was low, there was evidence for one specific isoform being correlated with lower expression in those with ALS. To address if the genotype of the VNTR was associated with ALS risk, we characterised the variation of the CFAP410 VNTR in ALS cases and matched controls by PCR analysis of the VNTR length, defining eight alleles of the VNTR. No significant difference was observed between cases and controls, we noted, however, the cohort was unlikely to contain sufficient power to enable any firm conclusion to be drawn from this analysis. This data demonstrated that the VNTR domain has the potential to modulate CFAP410 expression as a regulatory element that could play a role in its tissue-specific and stimulus-inducible regulation that could impact the mechanism by which CFAP410 is involved in ALS

    Rare and common genetic determinants of mitochondrial function determine severity but not risk of amyotrophic lateral sclerosis.

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∌50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS

    Rare and common genetic determinants of mitochondrial function determine severity but not risk of amyotrophic lateral sclerosis

    Get PDF
    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease involving selective vulnerability of energy-intensive motor neurons (MNs). It has been unclear whether mitochondrial function is an upstream driver or a downstream modifier of neurotoxicity. We separated upstream genetic determinants of mitochondrial function, including genetic variation within the mitochondrial genome or autosomes; from downstream changeable factors including mitochondrial DNA copy number (mtCN). Across three cohorts including 6,437 ALS patients, we discovered that a set of mitochondrial haplotypes, chosen because they are linked to measurements of mitochondrial function, are a determinant of ALS survival following disease onset, but do not modify ALS risk. One particular haplotype appeared to be neuroprotective and was significantly over-represented in two cohorts of long-surviving ALS patients. Causal inference for mitochondrial function was achievable using mitochondrial haplotypes, but not autosomal SNPs in traditional Mendelian randomization (MR). Furthermore, rare loss-of-function genetic variants within, and reduced MN expression of, ACADM and DNA2 lead to ∌50 % shorter ALS survival; both proteins are implicated in mitochondrial function. Both mtCN and cellular vulnerability are linked to DNA2 function in ALS patient-derived neurons. Finally, MtCN responds dynamically to the onset of ALS independently of mitochondrial haplotype, and is correlated with disease severity. We conclude that, based on the genetic measures we have employed, mitochondrial function is a therapeutic target for amelioration of disease severity but not prevention of ALS
    corecore