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Abstract
Progress in genomic analytical technologies has improved our possibilities to obtain 

information regarding DNA, RNA and their dynamic changes that occur over time or in 

response to specific challenges. This information describes the blueprint for cells, tissues 

and organisms and has fundamental importance for all living organisms. This review focuses 

on the technological challenges to analyse the transcriptome and what is the impact of 

transcriptomics on precision medicine. The transcriptome is a term that covers all RNA 

present in cells and a substantial part of it will never be translated into protein but is 

nevertheless functional in determining cell phenotype. Recent developments in 

transcriptomics have challenged the fundamentals of the central dogma of biology by 

providing evidence of pervasive transcription of the genome. Such massive transcriptional 

activity is challenging the definition of a gene and especially the term “pseudogene” that 

has now been demonstrated in many examples to be both transcribed and translated. We 

also review the common sources of biomaterials for transcriptomics and justify the 

suitability of whole blood RNA as the current optimal analyte for clinical transcriptomics. At 

the end of the review, a brief overview of the clinical implications of transcriptomics in 

clinical trial design and clinical diagnosis is given. Finally, we introduce the transcriptome as 

a target for modern drug development as a tool for extending our capacity for precision 

medicine in multiple diseases.

Keywords
Transcriptome, RNA-Seq, Gene Expression Profiling, Precision Medicine, Genomics, 

Molecular Targeted Therapy
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Impact statement
This review describes the impact of transcriptomics on experimental biology and its 

integration into medical practice. Transcriptomics is an essential part of modern biomedical 

research based on highly sophisticated and reliable technology. Transcriptomics can aid 

clinical practice and improve the precision of clinical diagnoses and decision-making by 

complementing existing clinical best practice. The power of which will be increased when 

combined with genomic variation from genome wide association studies and next 

generation sequencing. We are witnessing the implementation of RNA-based technologies 

in clinical practice that will eventually lead to the establishment of transcriptional medicine 

as a routine tool in diagnosis. 
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Introduction
Since the identification of the structure of proteins and nucleic acids and the mechanisms of 

gene expression, the central concept of biology has underpinned our understanding of gene 

function1. According to this concept, the information in the cell is from DNA to RNA and 

subsequently translated into proteins. Therefore, the function of genes should be analysed 

only by their ability to produce proteins and that proteins define phenotype. One field of 

research, transcriptomics, has revolutionised this central biological concept. Discovery of 

the abundance and complexity of RNA dynamics and function dramatically changed our 

understanding about the role of RNA, apart from encoding proteins, and challenged gene-

centric approach to explain the function of genome2. Transcriptome is a collective term 

describing all RNAs produced by a single cell, by a population of cells or tissue3. Recent 

progress in analytical technologies has unveiled the complexity of the regulation of the 

transcriptome. The transcriptome is the primary product of the genome and therefore 

analysis of the transcriptome provides primary information for functional genomics.

The human genome
One of original and the most remarkable results of the human genome project was the 

discovery that only 1.2% of the human genome encodes proteins and was therefore 

considered as functional and meaningful 4. This is also reflected in the early search for 

genetic variation associated with a specific disease focusing on DNA sequences solely in 

exons. The number of genes, protein-coding elements, was discovered to be around 30,000, 

a much smaller number than predicted and similar to that found in several other species 4. 

Based on these findings the rest of the genome was initially termed as junk DNA. However, 

additional studies have identified that most of the DNA has function, not only for genome 
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structure and packaging, but also to form the complexity of the molecular networks 

underpinning the diversity of cell function. Early studies, after the identification of individual 

chromosome sequences, indicated that genomic sequences were transcribed at least as 

much as an order of magnitude more than accounted for by the predicted gene models2. 

Similarly, the term “pseudogene” that implies that is not a real gene and considered as a 

remnant of evolution or “genomic fossil”5. It is now demonstrated that most of the 

pseudogenes are transcribed and translated into proteins challenging that definition of 

“pseudogene”6. Cap-analysis gene expression (CAGE) technology enabled the identification 

of at least 180,000 transcripts in the mammalian genome and it appeared that the majority 

of the genome is transcribed 7. At least 60% of the genome has been described as a 

transcriptional forest, where transcription is performed from both strands of the same DNA 

region without gaps 7. The most remarkable project in this field is known as an Encyclopedia 

of DNA Elements or ENCODE for short. Based on ENCODE findings at least 80% of genome is 

actively transcribed and this number is considered to be conservative8. Such data requires 

we review our interpretation of genome function and regulation and how that is utilised in 

clinical translation. 

Transcriptome, transcriptomics and transcriptome profiling
Transcriptome is a collection of the RNAs (transcripts) that single cell or tissue can produce, 

and it contains all types of RNAs9. Transcriptomics is the study of the transcriptome; 

analysing RNA and its different subcategories (mRNA, micro-RNA, non-coding RNA, etc) to 

identify changes in expression and its functional impact. Although transcriptomics focusses 

on content and transcript expression levels, it also includes the analysis of transcriptional 

regulation. The transcriptome can be studied by different methods, however the most 
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common options are genechips (to measure gene  expression on microarray platform) and 

RNA sequencing (RNA-seq) 9. Gene expression arrays initially focused solely on polyA 

purified RNA that encode proteins. Moreover, genechips also suffer from the requirement 

to be pre-designed, i.e. the content on the array is based on our pre-existing knowledge of 

predominantly exons that can be easily identified in genome sequence data 10, 11. Therefore, 

genechips give us a snapshot of the transcriptional changes of mRNA, but this snapshot is 

rather limited. More recent arrays (transcript based and tiling arrays) can give very 

comprehensive information about the transcriptional changes, nevertheless the genechips 

are inherently bound to pre-existing knowledge and do not provide information about the 

sequences of the transcripts 12,10. Only a few genechip versions are capable of identifying 

alternative splicing and specialised chip design is required to analyse such as micro-RNAs12. 

But the sequence information is lost in results files, and this is where the RNA-sequencing 

has clear advantage allowing for more detailed analysis to detect alternative splicing, intron 

retention and other events reflecting alterations in transcriptome regulation and the other 

classes of RNA. Therefore, RNA-sequencing has become the main technology for 

transcriptome analysis9, 13.

Sources of the transcriptome
Gene expression is both tissue specific and stimulus inducible therefore a key question for 

transcriptome analysis is the source of the tissue or cell type for analysis. The most common 

and easiest to justify is the primary tissue that is affected by pathological processes. This is 

based on the assumption that we know what tissue is affected and we have some 

preliminary understanding what the timeline and mechanisms of the pathological changes 

are. However, this assumption can be deceiving. For example, with CNS disorders, it is 
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difficult to determine which region or cell type is involved and also whether the pathological 

hallmarks of the disease were initiated by dysfunction in another brain regions, or 

periphery, many years before. As brain tissue is only accessible as post-mortem tissue, the 

changes in the transcriptome could arise from selective alteration of gene expression by the 

post-mortem time rather than in response to living with a chronic age-dependent disease 

occurring over a long time period 14, 15,16. In case of neurodegenerative diseases, this may 

mean that we miss the molecular pathological changes that initiate the degenerative 

process. The same is similar for other chronic age-dependent disease such as arthritis or 

heart disease. The cells that are targeted by primary pathology are often dead or have a 

significantly altered phenotype from those that represent the key pathological transitions. 

Some of the problems of addressing transcriptomics in the CNS are outlined below.

Firstly, recognised issues with the use of biobanked tissue samples that would affect 

transcriptomics include the heterogeneity of the samples, reliability of the diagnoses and 

variability in the quality control measures 17. The most drastic example to illustrate 

reliability challenges comes from the biobank having 12,000 samples available for research 

and only 18 of them with the suitable information and quality by the end 16. While the 

analysis of post-mortem brain samples is still valid and informative from a research point of 

view, the impact of these studies to improve our understanding about neurodegenerative 

disease needs addressed in a broader context 16. It is difficult to infer causative changes 

from the single time point that is based on the analysis of the tissues where the pathogenic 

processes are completed. 

Secondly, subjects may have used drugs for a long time and depending on the course of the 

disease the treatment schedules can be quite different between patients 17. Moreover, it is 

quite realistic to assume that the subjects have had comorbidities and taken drugs for those 
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symptoms as well. Drugs for heart disease and hypertension and statins are quite common 

in the aged population and therefore analysis of the post-mortem samples should most 

certainly take into account the drug history and comorbidities as confounders. This is 

something we do not see very often in studies using post-mortem tissue samples.

Thirdly, we need to consider what regions of the tissue is to be analysed. Again, in the case 

of the brain, regional changes in gene expression can be enormous 17. It is a complex tissue 

and choosing the right regions for comparison is often the most important decision for the 

analysis. For example, in the case of targeted mutation mouse models generated by 

homologous recombination the changes in the transcriptome of the brain are regionally 

very different 18-20. Targeted mutant mouse lines allow exclusion all confounding factors and 

careful matching of the study subjects for the genetically engineered mutations. However, 

even after the perfect matching for confounders, the deletion of the single gene induced 

enormously different changes in transcriptome in the different regions of the brain 20. Only 

the lack of the expression of the deleted gene was the similar result between the different 

brain regions 20. In addition to the regional difference in the brain tissue, genomic locus of 

the gene has also to be considered. We have analysed the transcriptome of the Wolfram 

syndrome mutant mice with the deletion of the Wfs1 gene and identified significant 

confounding effect from the genomic locus of the targeted gene 18. This locus-specific or 

genomic context effect means that even a single gene targeting, or deletion can induce the 

complex changes in the transcriptome that are not caused by the function of the gene, but 

by its location. Mouse models enable controlling for gender, age and environmental 

differences, providing the ideal study design conditions, but cannot avoid genomic 

background effect, “congenic footprint” 21. This effect needs to be taken into account and 

with appropriate adjustment the functionally meaningful differences can be identified 22. All 
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this illustrates how diverse the transcriptome is in different brain regions and therefore it is 

challenging to design studies with multiple brain regions involved as it is not trivial to 

differentiate between the normal regional and pathologically relevant differences. In 

summary, by analysing post-mortem brains we struggle to obtain the relevant information 

about the mechanisms of the disease and this information does not always help us to design 

better diagnostic tools or drugs.

However, analysis of the diseased tissues is important when it is possible during the 

pathogenesis of the disease. Repeated sampling during the course of the disease allows us 

to use the time-dependent causative interaction models. Longitudinal studies are therefore 

the best way to follow disease progression but severely limit the choice of tissue or 

component that can be measured to such as blood, skin, urine and microbiome. This also 

enables the monitoring of changes in the transcriptome during treatment and to compare 

different therapeutic options 23. In more limited cases, surgical removal of tissue during 

medical procedures is another option to access samples for transcriptomic analysis. The 

latter option is the most common for oncological samples and is potentially applicable for 

any surgically treated conditions. If we plan to perform longitudinal transcriptome analysis 

with samples from different time-points, then almost the only viable option is blood 

sampling. Skin sampling can also be alternative for some cases and diagnoses. We have 

shown that skin and blood are useful alternatives even for neurodegenerative diseases like 

Parkinson’s disease 24-26. Both blood and skin showed clear transcriptome differences in the 

case-control design and these tissues could be used for the diagnosis or monitoring the 

progression of the disease. Similarly, urine can be used as a source for transcriptome 

analysis 27, 28. However, as usually the cellular content in urine is low, the RNA level is also 
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low and that reduces potential of urine or other body fluids as a source for transcriptomics 

28. 

Whole blood versus PBMC transcriptome
Blood is a useful and easy to access surrogate tissue for transcriptome analysis, but the use 

of blood requires a few basic decisions. For example, it is possible to analyse whole blood or 

a particular fraction of blood cells. Peripheral Blood Mononuclear Cell (PBMC) separation 

has been one very popular method to isolate cells from the blood and to prepare them for 

RNA analysis. However, the PBMC fraction contains only lymphocytes and monocytes while 

all granulocytes like basophils, eosinophils and neutrophils are depleted. From all white cell 

count, neutrophils constitute 55 to 75% indicating that using of PBMC for transcriptome 

analysis would not give the full picture 29. Isolation of PBMCs covers only 20 to 50% of the 

cellular heterogeneity of the blood. Moreover, PBMC separation itself is a procedure that 

adds an extra uncontrollable variation to the analysis, and this should be avoided. Several 

studies have shown significant differences between the transcriptome profiles between 

PBMC and whole blood 30. It is reported that over 2,000 genes were differentially expressed 

with more than 2-fold difference between PBMC and whole blood from the same individual 

at same time 31. Therefore, for transcriptome analysis the whole blood RNA samples have a 

substantial advantage over PBMC or other fractionation.

Preanalytical considerations
Due to the complexity and the volume of the transcriptomics data preanalytical conditions 

have significant impact on the outcome of the analysis. The inadvertent variations can be 

introduced with the sampling of the tissue, during the storage and transportation or by the 

differences in the extraction methods. In addition, as addressed in previous sections, the 
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sources for RNA can be variable ranging from blood and other body fluids to the tissue 

biopsies, cellular smears and to single cell sorting. All these different approaches require 

standardised protocols to ensure reproducibility and high quality of the analysis. The testing 

and guidelines how to prepare and purify different clinical samples is vital for the further 

implementation of the transcriptomic analysis in clinical practise. RNA extraction can be 

notoriously complicated with variable options available that all can lead to different results 

32. Similarly, storage conditions have been shown to impact the quality of RNA and snap-

frozen samples detect signifficantly more genes than FFPE samples 33. This effect was not 

dependent on the time to fixation. Interestingly, miRNA expression was not affected by the 

fixation method and it was comparable between frozen or FFPE samples 33. In addition, 

purification of the liquid biopsy samples requires an extra effort and a complex workflow 34. 

As RNA can be purified from different samples, validation studies are required to develop 

standardised protocols that would enable robust and reproducible analysis of transcriptome 

for various clinical conditions. 

Practical utility of transcriptome analysis
The transcriptome is a snapshot of molecular events in the cell reflecting the functional 

activity of the genome at a given moment of time and requires a combination of analytical 

tools to describe these molecular changes. Currently, the majority of genomic tools used in 

clinical genomics only consider targeted DNA sequencing and not the transcriptome. 

However, there are several examples of how transcriptomic information improves the 

precision of the genomic analysis. 

The early studies to analyse transcriptomics used variable differential cloning technologies 

based on cDNA library preparation and comparative analysis 35. One of these methods, 

cDNA Representational Difference Analysis (cDNA-RDA), was used to identify differential 
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expression in pancreatic cancer 36. cDNA-RDA was proven to be a highly efficient and 

reproducible method that has been used in various models and organisms 37, 38. While the 

method itself was laborious and difficult to use for larger sample numbers, it clearly had its 

advantage as a hypothesis-free approach to observe transcriptional changes 39. As the 

method did not require specific equipment or expensive preparations like gene microchips, 

the method gained popularity and was applied to study variable pathologies or physiological 

responses 40. At the same time cDNA microarray technology was also developing and 

provided various in-house products These microarrays were based on the cDNA clone 

collections, their amplification and printing (spotting) on to glass slides 41. This technology 

required substantial infrastructure to run and it wasn’t widely accessible. Nevertheless, the 

initial studies demonstrated their suitability for pathology and clinical diagnostics in 

particular in cancer were tumour material was available. These studies indicated that breast 

cancers can be classified by their gene expression patterns into subtypes that were not 

identifiable with histological methods alone 42. The gene expression pattern was not only 

helpful to identify the molecular subtypes of the breast cancers, but also to predict the 

clinical course and outcomes of breast cancer 43. These early reports fuelled a myriad of 

similar studies to determine the transcriptional pattern of other tumours to identify 

potential diagnostic or prognostic biomarkers. Gene microarrays became standardised for 

transcriptional studies. The main advantage was the high-throughput analysis of the cDNA 

libraries and as the technology was scalable it was possible to increase sample sizes and the 

power of studies. However, gene arrays still suffered from a biased capture of targets which 

as stated previously were based on exon data or a limited number of non-coding RNAs. The 

latter was partially resolved when Next Generation sequencing (NGS) technologies become 

easily accessible to enable parallel whole genome sequencing (WGS) and RNA-sequencing 
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(RNA-seq). Clinical genetics analysis rapidly expanded from exome sequences to a complete 

RNA analysis. RNA-seq is the first technology that enabled complete transcriptome analysis 

covering all different types of RNA subclasses with complete sequence information and 

enables detection of complex profiles from various pathologies 9. 

Several examples support the value and the utility of transcriptomics in the complex analysis 

of clinical samples for association to disease. We have analysed the transcriptional profiles 

of osteosarcoma samples from fresh tumours in a paired study design and identified several 

new candidates involved in the development of osteosarcoma23. Moreover, with similar 

technology we were able to analyse archived formalin fixed paraffin embedded (FFPE) 

samples that gave us the possibility to evaluate the effect of chemotherapy on the 

transcriptional profile. The same dataset provided data regarding repetitive elements that 

were differentially expressed in the malignancy 44. Repetitive elements can only be 

efficiently analysed using the RNA-seq technology rather than genechips.

Transcriptome analysis can stratify patients who would otherwise be grouped as the same 

disease and this enables biomarker-driven clinical trials to improve their efficacy. Several 

meta-analyses have shown substantial improvement in study outcomes by using the 

biomarker-driven stratification in the study designs 45. Personalised medicine approaches 

involving biomarkers in study design improved response rates from 5 to 30 percent 

demonstrating the improvement that can be achieved by using a genomics driven 

approach45. For example, the Winther trial based on 303 patients utilised genomic-matching  

to personalise their cancer therapy 46. The study had two arms, one was based only on DNA 

data and the other only on RNA data. This trial introduced several innovative paradigm 

shifts showing an improved therapeutic response with the integration of transcriptomic 

profiling. Most importantly, the transcriptomic arm identified the most suitable solutions for 
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the patients with various solid tumours prospectively from the large database of therapies 

46. This trial considered patient therapy options at an individual level based on the features 

of person’s tumour and not on the results obtained from the aggregation of trials on large 

patient populations. Therapeutic guidance based only on the transcriptomic data resulted in 

the stabilising of disease in 30% of patients 46. While not statistically superior from the DNA-

only approach (26%), it is was a remarkable success considering that the study subjects all 

had advanced cancers with several previous therapies that were unsuccessful. 

Transcriptomic-guided therapy was considered because the DNA analysis alone does not 

often reveal actionable variants or mutations and RNA analysis could indicate the functional 

consequences. RNA-sequencing served here as an additional analytical tool to describe the 

functional changes in cancer that was in turn used in the therapeutic decision pipeline. 

NGS technologies have also changed the ways we analyse Mendelian diseases and made 

whole-exome sequencing (WES) or WGS accessible to identify disease-causing variants. 

However, the success rate for detecting causal changes ranges only from 20 to 30% 47. In a 

recent study, the use of RNA-seq analysis yielded diagnostic rate of 35% on previously 

unsolved cases by WGS analysis indicating a marked improvement 48. The main advantage of 

RNA-seq is its ability to detect aberrant splicing or disruptive changes in the transcriptional 

regulation that are not detectable with WGS or WES 48. This is the evidence to support the 

power of RNA-seq analysis also for Mendelian diseases and shows its clinical applicability in 

this space.

A recent example for the applicability of transcriptome analysis or RNA-based diagnostics 

can be found from the COVID-19 pandemic caused by the RNA-virus SARS-CoV2. The virus is 

only 29,900 bp long and contains 10 genes with gene 5 and 7 being functionally bicistronic 

49. Infection is based on the infectious transcriptome and can be viewed as a transcriptome 
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infection. Maybe the efficient therapy for viral infections lies in the targeting of the 

transcriptome to affect their transcriptional capacity. Transcriptome based therapies are 

already available for human diseases like Duchenne Muscular Dystrophy or amyloidosis 

showing the potential of the transcriptome based therapeutics 50-52. Transcriptome-based 

therapies offer a real systematic opportunity for personalized medicine and it requires 

complex transcriptome analysis as input 53. This therapeutic approach can turn the 

information in the transcriptomics into therapeutic options.

Conclusion
Transcriptomics is currently a rapidly evolving field with new data to either stand alone or 

integrate with other clinical information to expand and modify the future of health care. 

While current applications are mostly limited to experimental projects, a growing number of 

studies indicate the practical utility of transcriptomics for diagnostics, genomics-driven trial 

design and personalised drug development. Larger clinical validation of such experimental 

hypothesis will allow for accepted clinical usage, indeed blood samples can be taken in 

general practice and sent off for analysis and interpretation centrally before transmission to 

the clinician. Transcriptomics has revealed the vast complexity of the transcriptome and we 

are just beginning to understand the principles of how this translates to function, 

pathophysiolgy and therapeutic opportunities. 
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