70 research outputs found

    Risk-Informed Sustainable Development in the Rural Tropics

    Get PDF
    Many people live in rural areas in tropical regions. Rural development is not merely a contribution to the growth of individual countries. It can be a way to reduce poverty and to increase access to water, health care, and education. Sustainable rural development can also help stop deforestation and reduce live-stock, which generate most of the greenhouse gas emissions. However, eorts to achieve a sustainable rural development are often thwarted by oods, drought, heat waves, and hurricanes, which local communities are not very prepared to tackle. Agricultural practices and local planning are still not very risk-informed. These deciencies are particularly acute in tropical regions, where many Least Developed Countries are located and where there is, however, great potential for rural development. This Special Issue contains 22 studies on best practices for risk awareness; on local risk reduction; on several cases of soil depletion, water pollution, and sustainable access to safe water; and on agronomy, earth sciences, ecology, economy, environmental engineering, geomatics, materials science, and spatial and regional planning in 12 tropical countries

    Renewing Local Planning to Face Climate Change in the Tropics

    Get PDF
    This book aims to inspire decision makers and practitioners to change their approach to climate planning in the tropics through the application of modern technologies for characterizing local climate and tracking vulnerability and risk, and using decision-making tools. Drawing on 16 case studies conducted mainly in the Caribbean, Central America, Western and Eastern Africa, and South East Asia it is shown how successful integration of traditional and modern knowledge can enhance disaster risk reduction and adaptation to climate change in the tropics. The case studies encompass both rural and urban settings and cover different scales: rural communities, cities, and regions. In addition, the book looks to the future of planning by addressing topics of major importance, including residual risk integration in local development plans, damage insurance and the potential role of climate vulnerability reduction credits. In many regions of the tropics, climate planning is growing but has still very low quality. This book identifies the weaknesses and proposes effective solutions

    Risk-informed sustainable development in the rural tropics

    Get PDF
    This Editorial presents the special issue Risk-informed sustainable development in the rural tropics published by the journal Sustainabilit

    Past and Future Precipitation Trend Analysis for the City of Niamey (Niger): An Overview

    Get PDF
    Despite the interest in detecting the extremes of climate in the West African Sahel, few studies have been specifically conducted on the Republic of Niger. This research focuses on past, present, and future precipitation trends for the city of Niamey through the combined assessment of WMO precipitation indices using RClimDex and the Standardized Precipitation Index. Past daily precipitation data were derived from a 60-year reconstructed meteorological dataset for the Niamey airport station for the period of 1950–2009 and validated through comparison with an observed time series at Niamey airport (1980–2012). Precipitation analysis confirms the literature’s findings, in particular, a decreasing trend in total precipitation over the period of 1950–2009, and a positive trend for data that spans over the period of 1980–2009, suggesting a precipitation recovery after the dry epoch (1968–1985), even if the deficit with the wettest years in the period of 1950–1968 has not been made up. Furthermore, WATCH-Forcing-Data-ERA-Interim projections, elaborated under RCP 4.5 and RCP 8.5 socio-economic conditions, show that precipitation will increase in the future. Therefore, the Nigerien population will benefit from increased rainfall, but will also have to cope with the exacerbation of both flood and drought risks due to a great interannual variability that can positively or negatively influence water availability

    Renewing climate planning locally to attend the 11th Sustainable development goal in the tropics

    Get PDF
    In the last seven years, tropical cities with a climate plan have tripled compared to the previous seven years. According to the 11th United Nations’ Sustainable Development Goal, climate planning should significantly increase by 2030. The Sendai framework for disaster risk reduction (2015) and the New urban agenda signed in Quito (2016) indicate how to achieve this goal through analysis, categories of plans and specific measures. This chapter identifies the main obstacles to the significant increase in tropical human settlements with a climate plan and the possible solutions. First of all, the distribution and trend at 2030 of tropical human settlements are ascertained. Then local access to information on damage, hazard, exposure, vulnerability and risk, and the consideration of these aspects in the national guides to local climate planning are verified. Lastly, the categories of plans and climate measures recommended by the United Nations are compared with those that are most common today, using a database of 401 climate plans for 338 tropical cities relating to 41 countries. The chapter highlights the fact that the prescription for treating tropical cities affected by climate change has been prepared without an accurate diagnosis. Significantly increasing climate planning must consider that small-medium human settlements in the Tropics will prevail at least until 2030. And most effort will be required from Developing and Least Developed Countries. The recommendations of the United Nations concerning the preliminary analyses ignore the fact that local authorities usually do not have access to the necessary information

    Climatological Analysis and Early Warning System in the Sirba basin

    Get PDF
    Climatological Analysis on the Sirba basin: evaluation of rain climate inde

    Flood Vulnerability Analysis in Urban Context: A Socioeconomic Sub-Indicators Overview

    Get PDF
    Despite indicators-based assessment models for flood vulnerability being a well-established methodology, a specific set of indicators that are universally or widely accepted has not been recognized yet. This work aims to review previous studies in the field of vulnerability analysis in order to overcome this knowledge gap identifying the most accepted sub-indicators of exposure, sensitivity and adaptive capacity. Moreover, this review aims to clarify the use of the terms of vulnerability and risk in vulnerability assessment. Throughout a three-phase process, a matrix containing all the sub-indicators encountered during the review process was constructed. Then, based on an adaptation of the Pareto diagram, a set of the most relevant sub-indicators was identified. According to the citation count of each sub-indicator, indeed, 33 sub-indicators were chosen to represent the most universally or widely accepted sub-indicators

    Renewing Climate Planning Locally in the Tropics: Conclusions

    Get PDF
    In the Tropics, a significant increase in the number of cities provided with climate plans by 2020, as announced in the 11th Sustainable development goalof the United Nations, requires an unprecedented effort. To achieve it, we have to simplify the planning process and improve the quality of the plans. The aim of this book was to collect methods and experiences to inspire the simplification of the planning process and increase the quality of climate planning. We focused attention on the three critical phases of the planning process: analysis, decision making in planning, climate measures. Sixteen case studies from Ethiopia, Haiti, Malawi, Mexico, Niger, Senegal, Tanzania and Thailand cover automatic weather stations in remote areas, rainfall estimation gridded datasets, open data for vulnerability index to climate change, early warning systems, quality of climate plans index, multi-risk local assessment, flooding risk evaluation method, backcasting, spatial dimension in disaster risk reduction and resilience, gasification stoves, index-based insurance and vulnerability risk credit. After indicating the possible analyses, 19 recommendations were supplied to the United Nations SDGs monitoring system, the national weather services and those responsible for natural risks, to the Development banks, Official development aid and the research institutions

    Detection of temporary surface water bodies in Niger using high resolution imagery

    Get PDF
    Temporary surface water bodies in sub-Saharan areas have important socio-cultural values, providing freshwater for population and many agro-pastoral services. Nevertheless, they can be the perfect habitat for insects and pests, thus endangering human health. Moreover, temporary water bodies can cover vast areas of cities and villages hindering the practicability of the roads networks. Addressing the problem within villages and cities requires not only the identification of the extension and position of the water bodies, but also of their seasonal maximum potential extension. Temporary surface water bodies are usually remote sensed from satellite imagery. This technique is very effective on large scale, although limited at local scale by temporal and spatial resolutions of satellites. Traditional surveys can be time-consuming and limited by the hard surveying condition of the area, a valuable alternative to collect punctual and high resolution data are the UAVs (Unmanned Aerial Vehicles). This contribution presents a semi-automatic method to detect temporary surface water bodies at local scale using UAV high resolution imagery. It was tested in two villages of the Tillaberì region, South-West Niger. A digital terrain model (DTM, 10 cm grid) generated from UAV imagery and analysed to localize the depressions of the area with fill sink algorithm. The depressed areas were classified based on their depth and extension. The areas presenting high depth and extension were considered as potentially interested by temporary surface water bodies. The method was validated by the comparison to radiometric information (6cm/pixel) collected from near infrared (IR) and visible (Red Green Blue) sensors mounted on UAV during the rainy season, in a period of minimum expansion of temporary surface water bodies. The radiometric data were elaborated in a Normalized Difference Water Index (NDWI); which information correspond to the one obtained from the DTM. The proposed methodology appears solid and effective, and allows the identification of those areas that may be interested by temporary stagnant water in case of abundant precipitations. The cross-reading of radiometric and digital elevation information provides a high resolution localization of present, and potentially present, temporary surface water bodies

    Hydrological Web Services for Operational Flood Risk Monitoring and Forecasting at Local Scale in Niger

    Get PDF
    Emerging hydrological services provide stakeholders and political authorities with useful and reliable information to support the decision-making process and develop flood risk management strategies. Most of these services adopt the paradigm of open data and standard web services, paving the way to increase distributed hydrometeorological services’ interoperability. Moreover,sharing of data, models, information, and the use of open-source software, greatly contributes to expanding the knowledge on flood risk and to increasing flood preparedness. Nevertheless, services’ interoperability and open data are not common in local systems implemented in developing countries. This paper presents the web platform and related services developed for the Local Flood Early Warning System of the Sirba River in Niger (SLAPIS) to tailor hydroclimatic information to the user’s needs, both in content and format. Building upon open-source software components and interoperable web services, we created a software framework covering data capture and storage, data flow management procedures from several data providers, real-time web publication, and service-based information dissemination. The geospatial infrastructure and web services respond to the actual and local decision-making context to improve the usability and usefulness of information derived from hydrometeorological forecasts, hydraulic models, and real-time observations. This paper presents also the results of the three years of operational campaigns for flood early warning on the Sirba River in Niger. Semiautomatic flood warnings tailored and provided to end users bridge the gap between available technology and local users’ needs for adaptation, mitigation, and flood risk management, and make progress toward the sustainable development goals
    • …
    corecore