10 research outputs found

    Quantum nonlinear optics using cold atomic ensembles

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Physics, 2013.Cataloged from PDF version of thesis.Includes bibliographical references (pages 219-232).The fundamental properties of light derive from its constituent particles, photons, which are massless and do no interact with each other. The realization of interactions between photons could enable a wide variety of scientific and engineering applications. In particular, coherent interactions would open the path for the simulation of quantum systems with light. Photon-photon interactions can be mediated by matter, in our case cold atomic ensembles, which provide a nonlinear medium. In conventional nonlinear media, the nonlinearities are negligibly weak at intensities corresponding to single photons and nonlinear optics at the few-photon level is a long-standing goal of optical and quantum science. In this thesis, we report on two different experimental approaches to create optical media with giant nonlinearities. Both approaches rely on Electromagnetically Induced Transparency, in which photons traveling in the medium are best described as part-matter part-light quantum particles, called polaritons. In our first approach, we achieve low-light nonlinearities by loading ensembles of cold atoms in a hollow-core photonic crystal fiber to enhance the polariton-photon interactions. In our second approach, the photons are coupled to strongly interacting Rydberg atoms, which mediate large interactions between single quanta of light. Moreover, the intrinsic nature of these interactions can be tailored to take on a coherent dispersive form.by Thibault Peyronel.Ph.D

    Quantum nonlinear optics using cold Rydberg atoms

    Get PDF
    Although photons do no a ect each other in vacuum, interactions between individual photons could enable a wide variety of scienti c and engineering applications. Here we report on the creation of a quantum nonlinear medium with large photon-photon interactions at the single photon level. Our approach relies on Electromagnetically Induced Transparency (EIT) techniques, in which individual photons are coherently mapped onto strongly interacting Rydberg atoms. Under EIT conditions, photons traveling in the medium are best described as part-matter part-light quantum particles, called polaritons, which experience long-range interactions through the Rydberg blockade. In particular, we demonstrate coherent photon-photon interactions, akin to those associated with conventional massive particles, paving the way for novel photonics states and quantum simulation with light

    Switching of light with light using cold atoms inside a hollow optical fiber

    Get PDF
    We demonstrate a fiber-optical switch that operates with a few hundred photons per switching pulse. The light-light interaction is mediated by laser-cooled atoms. The required strong interaction between atoms and light is achieved by simultaneously confining photons and atoms inside the microscopic hollow core of a single-mode photonic-crystal fiber

    Switching and Counting With Atomic Vapors in Photonic-Crystal Fibers

    Get PDF
    We review our recent experiments demonstrating a hollow-core photonic-crystal fiber loaded with laser-cooled atomic vapor as a system for all-optical switching with pulses containing few hundred photons. Additionally, we discuss the outlooks for improving the efficiency of this switching scheme and present preliminary results geared toward using the system as a photon-number resolving detector

    Quantum nonlinear optics with single photons enabled by strongly interacting atoms

    Get PDF
    The realization of strong nonlinear interactions between individual light quanta (photons) is a long-standing goal in optical science and engineering, being of both fundamental and technological significance. In conventional optical materials, the nonlinearity at light powers corresponding to single photons is negligibly weak. Here we demonstrate a medium that is nonlinear at the level of individual quanta, exhibiting strong absorption of photon pairs while remaining transparent to single photons. The quantum nonlinearity is obtained by coherently coupling slowly propagating photons to strongly interacting atomic Rydberg states in a cold, dense atomic gas. Our approach paves the way for quantum-by-quantum control of light fields, including single-photon switching, all-optical deterministic quantum logic and the realization of strongly correlated many-body states of light.National Science Foundation (U.S.)MIT-Harvard Center for Ultracold AtomsUnited States. Air Force Office of Scientific Research. Multidisciplinary University Research Initiative (Quantum Memories

    Attractive photons in a quantum nonlinear medium

    Get PDF
    The fundamental properties of light derive from its constituent particles—massless quanta (photons) that do not interact with one another. However, it has long been known that the realization of coherent interactions between individual photons, akin to those associated with conventional massive particles, could enable a wide variety of novel scientific and engineering applications. Here we demonstrate a quantum nonlinear medium inside which individual photons travel as massive particles with strong mutual attraction, such that the propagation of photon pairs is dominated by a two-photon bound state. We achieve this through dispersive coupling of light to strongly interacting atoms in highly excited Rydberg states. We measure the dynamical evolution of the two-photon wavefunction using time-resolved quantum state tomography, and demonstrate a conditional phase shift exceeding one radian, resulting in polarization-entangled photon pairs. Particular applications of this technique include all-optical switching, deterministic photonic quantum logic and the generation of strongly correlated states of light

    Quantum nonlinear optics using cold Rydberg atoms

    No full text
    Although photons do no a ect each other in vacuum, interactions between individual photons could enable a wide variety of scienti c and engineering applications. Here we report on the creation of a quantum nonlinear medium with large photon-photon interactions at the single photon level. Our approach relies on Electromagnetically Induced Transparency (EIT) techniques, in which individual photons are coherently mapped onto strongly interacting Rydberg atoms. Under EIT conditions, photons traveling in the medium are best described as part-matter part-light quantum particles, called polaritons, which experience long-range interactions through the Rydberg blockade. In particular, we demonstrate coherent photon-photon interactions, akin to those associated with conventional massive particles, paving the way for novel photonics states and quantum simulation with light

    Few photon switching with slow light in hollow fiber

    No full text
    Cold atoms confined inside a hollow-core photonic-crystal fiber with core diameters of a few photon wavelengths are a promising medium for studying nonlinear optical interactions at extremely low light levels. The high electric field intensity per photon and interaction lengths not limited by diffraction are some of the unique features of this system. Here, we present the results of our first nonlinear optics experiments in this system including a demonstration of an all-optical switch that is activated at energies corresponding to few hundred optical photons per pulse.Packard FoundationDefence Advanced Research Projects AgencyNational Science FoundationMIT-Harvard Center for Ultracold Atom
    corecore