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Abstract

The fundamental properties of light derive from its constituent particles, photons, which
are massless and do no interact with each other. The realization of interactions between
photons could enable a wide variety of scientific and engineering applications. In particu-
lar, coherent interactions would open the path for the simulation of quantum systems with
light. Photon-photon interactions can be mediated by matter, in our case cold atomic
ensembles, which provide a nonlinear medium. In conventional nonlinear media, the non-
linearities are negligibly weak at intensities corresponding to single photons and nonlinear
optics at the few-photon level is a long-standing goal of optical and quantum science.

In this thesis, we report on two different experimental approaches to create optical
media with giant nonlinearities. Both approaches rely on Electromagnetically Induced
Transparency, in which photons traveling in the medium are best described as part-matter
part-light quantum particles, called polaritons. In our first approach, we achieve low-light
nonlinearities by loading ensembles of cold atoms in a hollow-core photonic crystal fiber
to enhance the polariton-photon interactions. In our second approach, the photons are
coupled to strongly interacting Rydberg atoms, which mediate large interactions between
single quanta of light. Moreover, the intrinsic nature of these interactions can be tailored
to take on a coherent dispersive form.

Thesis Supervisor: Vladan Vuletid
Title: Professor of Physics
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Chapter 1

Introduction

1.1 Overview

The fundamental properties of light derive from its constituent particles, photons, which

are massless and do no interact with each other. At the same time, the realization of

interaction between photons could enable a wide variety of scientific and engineering

applications. In particular, coherent interactions, akin to those associated with conven-

tional massive particles, would open the path for the simulation of quantum systems

with photons. Photon-photon interactions can be mediated by matter, in our case cold

atomic ensembles, which provide a nonlinear medium. In conventional nonlinear media,

the nonlinearities are negligibly weak at intensities corresponding to single photons and

nonlinear optics at the few-photon level is a long-standing goal of optical and quantum

science. In this thesis, we report on two different experimental approaches to create opti-

cal media with giant nonlinearities. Both approaches rely on Electromagnetically Induced

Transparency (EIT) techniques, in which a single photon is coherently mapped onto and

retrieved from an ensemble of cold atoms, which offer exquisite control and long coher-

ence times. Under EIT condition, photons traveling in the medium are best described

as part-matter part-light quantum particles, called polaritons. In our first approach, we

achieve low-light nonlinearities through interactions between the atomic component of the

polaritons and photons. This approach requires a large interaction probability between

individual photons and atoms: to that purpose, we load ensembles of cold atoms in a

hollow-core photonic crystal fiber. In our second approach, the photons are coherently
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coupled via EIT to strongly interacting Rydberg atoms, which mediate large photon-

photon interactions between single quanta of light. Moreover, the intrinsic nature of

these interactions can be tailored to take on a dissipative form or a coherent dispersive

one.

This thesis is organized in the following manner. Firstly, we provide some scientific

motivation for this work by considering the importance of quantum nonlinear optics for

applications in the fields of quantum information science and quantum simulation (present

Chapter). In Chapter 2, we review how EIT techniques allow dramatic enhancement

of the optical nonlinearities with respect to conventional media. We then turn to the

description of our hollow core fiber experiment, which is covered in Chapters 3 and 4. In

particular, in Chapter 4, we report on experimental progress towards optical nonlinearities

beyond the single-photon single-atom cooperativity. In the remaining part of the thesis,

we focus on the results of our Rydberg EIT experiment. Rydberg atoms properties are

reviewed in Chapter 5. Our experimental setup is detailed in Chapter 6. In Chapters 7

and 8, we demonstrate single photon nonlinearities using Rydberg EIT, respectively in the

dissipative and dispersive regimes. The details of our theoretical analysis are postponed to

the Appendix section. EIT is reviewed in Appendix A. Appendix B details our analytical

treatment of the stationary light experiments presented in Section 4.2. Quantum nonlinear

optics theory for Rydberg EIT is described in Appendix C for the dissipative regime and

Appendix D for the dispersive regime.

1.2 Nonlinear Optics in Quantum Information Sci-

ence.

The rapid developpement of integrated photonics and optoelectronics over the last decades

raises the question of the partial replacement of electronic currents by optical waves in

computational devices. The motivation stems from the traveling speed of light and the

possibility to shape wavepackets with sub-picosecond length, which could increase infor-

mation transfer and processing rates. A building block for such computers would be

photonic transistors, where few control photons would enable or disable the transmission

of light in a waveguide. A fundamental obstacle for a foreseeable future is the miniatur-

20



ization, scalability and bandwidth of these all-optical devices.

Beyond classical computation, the experimental demonstration of entanglement in the

early 1980s [1, 2] has generated a tremendous interest in exploiting quantum mechanical

properties to improve the transmission and processing of information, a field known as

Quantum Information Science [3]. Three particularly enticing directions of research have

emerged over the last years. The first one is quantum communication, where information

encoded in quantum states (qubits) is exchanged between nodes of a quantum network,

where it can be stored and manipulated in a coherent way [4, 5, 6]. In particular, the

transmission of information in these networks can be secured by quantum cryptography.

Secondly, entangled states can be used to push the boundaries of metrology beyond the

Standard Quantum Limit, which sets a limit to the measurement precision due to de-

tection photon shot-noise [7]. Finally, the most awaited application is the realization

of a quantum computer, where qubits interact through quantum logic gates to perform

computational tasks more efficiently than their classical analogs [3].

Photons are a natural candidate for Quantum Information Science and were initially

used to demonstrate entanglement[1, 2]. They are the obvious choice to act as "flying"

qubits in quantum communication protocols, given their ability to travel over long dis-

tance with little noise and at the speed of light. For quantum computation, photons

are one of the alternatives currently being explored, along with ions[8], nuclear mag-

netic resonance[9], atoms [10, 11], and superconducting qubits[12, 13]. The realization of

quantum gates requires the qubits to be initialized and read while being protected from

decoherence induced by interactions with the environment. Simultaneously, it requires

strong controllable coherent interactions between individual qubits (possibly between dif-

ferent sorts of qubits in hybrid systems). Single photons (for which the qubits states can

be encoded as polarization, spatial modes or time bins) offer the advantage to robustly

and quickly carry the information between spatially separated gates, and techniques to

manipulate and detect light at the single-photon level are well established. Two essen-

tial elements still actively pursued are the on-demand, deterministic generation of single

photons and the realization of strong coherent interactions at the single photon level. In

principle, nonlinear optics can be used to attain these goals. For example, parametric

down conversion has proved itself a useful source of single photons in the early stages of

21



experimental quantum optics. As we will review, intensity sensitive Kerr-type materials

exhibiting a third order nonlinear susceptibility can be used to convert coherent pulses

into single photon pulses or achieve conditional nonlinear phase-shifts, a fundamental

element for quantum gates. Unfortunately optical nonlinearities (both dissipative and

dispersive) in traditional media are negligibly weak at intensities corresponding to a sin-

gle photon. Bright deterministic single photon sources are still an active topic of research,

as well as optical nonlinearities at the single photon level. To this day, the most promis-

ing paths are cavity Quantum Electro-Dynamics (QED) and Electromagnetically Induced

Transparency (EIT). In cavity QED, photons are strongly coupled to a common atom or

atomic ensemble by way of a high-finesse optical cavity. In EIT, quantum interferences

are harnessed to coherently map photons onto large atomic ensembles, giving rise to par-

tially atomic and partially photonic quasi-particles, called polaritons. The purpose of the

work presented in this thesis is the creation of EIT-based strong photon-polariton and

polariton-polariton interactions, leading to single-pass optical media with large nonlinear

susceptibilities at the few-photon level.

To illustrate the possibilities of Kerr nonlinearities for photonic quantum computation,

we consider the canonical C-NOT gate [14, 15]. A C-NOT gate, which flips a target qubit

depending on the value of a control qubit can be realized for photons by using a Mach-

Zender interferometer, with a Kerr nonlinear medium inserted in one of the arms, as

depicted in Fig. 1-1. Here we used a dual-rail qubit repsentation, in which a single photon

is shared between two modes a and b, and the two states of the qubit are 110)ab and I01)ab.

In the absence of phase-shit introduced by the Kerr medium, the status of the control

qubit is unchanged as photons in modes a and b will exit the interferometer in modes

a" and b" respectively. The Kerr-type nonlinear susceptibility X( 3) generates cross-phase

modulation between a photon in mode b' and a photon in mode c, resulting in a phase

shift <5 = X( 3)L for the photon in mode b', and rotates the state at the output of the

second beamsplitter. In particular, for a conditional phase shift of ir, the output modes

are inverted: a" = b and b" = a, as expected for a C-NOT gate.

The C-NOT gate plays a fundamental role in quantum computation, as any unitary

gate between two qubits can be engendered by a C-NOT gate and an ensemble of single

qubit rotations. A C-NOT gate between photons can also be implemented with solely
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Figure 1-1: C-NOT gate for photons. The states of the dual rail qubits are encoded
as 11) = 110)ab and 10) = 101),b for the control qubit and 11) = 110)cd and 10) = 101)cd for
the target qubit. The annihilation operators for the different modes follow the relations:
a' = a+b' b b-a a" a'-Wbeio and b" = a'+beio

linear optical elements, as proposed by Knill, Laflamme and Milburn (KLM) [16] and

later demonstrated experimentally [17]. Nevertheless, such a gate is non deterministic as

it only performs the C-NOT operation with a finite probability and at least two additional

single photons are needed to condition the success of the operation. In theory, the success

probability can be increased by using higher number of auxiliary single photons. In

practice, the overhead cost in single photons is an issue for scalable quantum computing in

the absence of bright on-demand single photon sources. As a consequence, large nonlinear

interactions at the single-photon level are still a much needed stepping stone for the optical

implementation of quantum information processes.

The C-NOT gate described in figure Fig. 1-1 is closely related to a quantum non-

demolition (QND) measurement of photons based on dispersive Kerr effect [18]. The

photon number of a signal field in mode c determines the phase of the field in mode

b', which can subsequently be detected by interference with the field in mode a'. The

quantum non-demolition measurement is enabled by the fact that the Kerr effect affects

the phase of the probe beam without modifying the photon number observables of the

probe and signal fields. The measurement of the photon number of the signal increases

the uncertainty of its conjugate variable, i.e. the phase of the signal field, to satisfy

the Heisenberg inequality. In particular, it was demonstrated in [18] that the product

of the uncertainties for the photon number and the phase of the signal field after the

QND measurement is equal to that of the probe field and can thus satisfy the Heisenberg

equality.
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Figure 1-2: Entanglement enhanced interferometry. a, Mach-Zender interferometer.
The output signal on the balanced photodiode gives a measure of the phase # with an
uncertainty set by the Standard Quantum Limit AO=i/VN for classical input states. b,
The Heisenberg uncertainty limit AZ=1/N can be reached using entangled states. Here
the entanglement between single photons is realized by a series of C-NOT gates.

A crucial property of Kerr nonlinearities is the ability to entangle photons. Photons

are a convenient tool for quantum metrology where interferometers measure the phase

of electric fields with sub-wavelength accuracy. Typically, interferometers are limited by

the standard quantum limit (SQL) which is due to photon shot noise. A typical example

is given by the Mach-Zender interferometer (see Fig. 1-2,a). If the qubit is intialized in

state 10), the presence of a phase shift 0 in one of the arms of the interferometer induces

a rotation of the qubit to the state: cos I0) + sin (11) (where we have neglected the fac-

tors i introduced by the beam splitters and the overall phase for simplicity). The signal

P at the output of the balanced photon detectors which subtracts the signal between

the two arms of the interferometer is P = (b"tb" - a"t a") = cos #. The correspond-

ing standard deviation is AP = Isin #j, and the uncertainty of the phase measurement

A# = AP JaP/&#OI 1 is 1. By repeating the experiment with N uncorrelated photons,

the uncertainty is reduced to the standard quantum limit AO = i/WN. The same limit

is obtained for a coherent state with average photon number N at the input of the inter-

ferometer. However, the fundamental limit imposed by the laws of quantum mechanics

is the the Heisenberg limit AO = 1/N. This limit can be reached by using entangled

photons. An example is given in Fig. 1-2,b. A Hadamard gate on the first photonic
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qubit followed by a series of C-NOT gates prepares the multi-qubit system in the en-

tangled state :10,0, .... , 0)+l1, 1, ... , 1). The phase shift affecting the qubits in state |1)

rotates the qubits to 10, 0, .... , 0) + eiN0f 1, 1., 1), which can then be desentangled into

(cos N 10) + sin |11)) 10, 0,..., 0). The signal P = cos N# still has a standard deviation

1 corresponding to the detection of a single photon, but the sensitivity of the interfer-

ometer has been increased by a factor N and the standard deviation A# = 1/N reaches

the Heisenberg limit. More generally, optical nonlinearities induce light squeezing, which

can subsequently be used in interferometry. An example is the squeezing of the photon

number by quantum-non demolition measurement introduced previously.

1.3 Highly correlated states of light

A typical example of strongly correlated states is the Tonks-Girardeau gas of impenetra-

ble bosons [19, 20]. In this one-dimensional system, bosons partially acquire fermionic

properties due to the repulsive potential which prevents them form occupying the same

position, much like the Pauli exclusion principle. Because the particles cannot pass each

other for large repulsive interactions, their position is strongly correlated to that of their

nearest neighbors. Proposed more than 50 years ago, Tonks-Girardeau gases[21, 22] as

well as other highly correlated states, most famously the Mott insulator[23], were observed

recently in cold atomic gases loaded into optical lattices.

The possibility to achieve similarly correlated states for photons has been extensively

studied in recent years [24] but many-body strongly correlated photonic states have not

been observed yet. An advantage over their atomic counterparts is that direct correlation

measurements of photons are a standard procedure in quantum optics. The earliest pro-

posals were based on photon blockade [25] in coupled arrays of optical cavities [26, 27, 28].

For strong enough coupling of the photon-atom system, each cavity behaves like an impen-

etrable particle for other photons, but the realization of such a system is highly challenging

experimentally. Tonks-Girardeau type gases of photons were subsequently proposed for

one-dimensional geometries, using light with tight confinement in a waveguide [29, 30]. In

this work, the cavity induced blockade is replaced by effective nonlinear interactions in the

EIT regime between stationary light pulses for which a Bragg grating created by counter-
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propagating control fields acts as an effective cavity. The experimental challenge resides

in the high optical depth (> 1000) and cooperativity (> 0.1) needed to reach a large

effective cavity finesse and a strong photon-photon interaction probability. Cold atoms

loaded in the hollow core of an photonic crystal fiber is one of the proposed experimental

solutions to meet these conditions and is explored in Chapters 3,4. Other experimental

efforts in that direction include cold atoms trapped along tapered fibers [31].

In such a system, the light propagation is governed by a quantum nonlinear Schroedinger

equation [32, 30]. The nonlinearities are tunable and result in repulsive or attractive inter-

actions, corresponding respectively to anti-bunching and bunching of light. In the case of

an attractive potential, the bunching is due to the excitation of two-photon bound states

in the system. In Chapters 7 and 8, we will explore equivalent physics where the strong

nonlinearities are introduced by Rydberg blockade instead of stationary light pulses tech-

niques. Interestingly, photonic bound states have also been predicted for other nonlinear

one-dimensional system, such as a single scatterer strongly coupled to a photonic waveg-

uide [33, 34]. On a related topic, a nonlinear Kerr medium with group velocity dispersion

supports the existence of solitons (see Chapter 2). The existence of quantum solitons,

i.e. clusters of bound polaritons with well defined energy and photon number has been

predicted but never observed due to the low Kerr nonlinearities of conventional optical

materials [35].

Finally, as mentioned above, the Rydberg blockade in dense atomic gases is a useful

tool to introduce large atomic and photonic interactions and explore the many-body

physics of interacting systems. In particular, highly correlated atomic states, Rydberg

crystals, have been predicted [36] and observed [37]. These correlations can then be

coherently mapped and retrieved on photonic states.

1.4 Cavity QED-based quantum nonlinear optics

As underlined above, large optical nonlinearities are a cornerstone of future photon-based

quantum technologies. In particular for quantum information processes and quantum

simulation of many-body physics with light, it is necessary for the nonlinearities to be

significant at the single-photon level in media which are simultaneously loss-free. In
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Chapter 2, we will discuss how optical nonlinearities, traditionally weak in conventional

media, can be enhanced in atomic gases by EIT and Rydberg EIT. It is an alternative

approach to the field of cavity QED [38], which has been successful a path to mediate

strong photon-photon interactions.

The concept of photon blockade was first introduced by considering a medium with

third-order EIT-enhanced nonlinearities [39, 40] placed in a high finesse cavity [25]. How-

ever, it was rapidly realized that the anharmonic system provided by a single two-level

scatterer strongly coupled to an optical resonator was a simpler way to experimentally

achieve photon blockade. For such a system, the scatterer-cavity mode system is de-

scribed by the Jaynes-Cummings Hamitonian. On resonance, the atomic state is dressed

by the field in the mode of the cavity, which symmetrically splits the coupled atom-light

system in two eigenlevels separated by 2v Ng where g is the vacuum Rabi frequency

of the atom-cavity system and N the number of photons in the cavity mode. The an-

harmonicity of the system prevents the simultaneous resonance of the system by several

photons. One of the most striking application is the ability for the atom-cavity system to

act as a photon turnstile, which transmits photons one by one and reflects the others [41].

The strong coupling regime between atom-like scatterers and optical resonators has since

then been achieved in various systems and blockade experiments have been performed

for atoms evanescently coupled to microtoroidal cavities [42], quantum dots coupled to

photonic crystals [43, 44], and superconducting qubits in transmission line resonators [45],

among other works. Another spectacular achievement of cavity QED is the realization of

conditional phase shifts, paving the way for quantum gates [46, 47, 48].

The main limitations of cavity QED are first the scalability in the context of photonic

many-body physics and secondly the necessity to mitigate the high finesse required in

the strong coupling regime with the bandwidth of the cavity and the power transmission.

In contrast, EIT and Rydberg EIT offer a virtually loss-free (only limited by atomic

decoherence) platform for studying mesoscopic numbers of interacting quantum particles

of light.
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Chapter 2

Nonlinear Optics

2.1 Optical Kerr effect

Optical nonlinearities [49] arise when the polarization density P(r, t) of a dielectric medium

is not strictly proportional to the electric field E(r, t). For a field much smaller in ampli-

tude to the characteristic electric field of the medium (the field binding the nucleus and

the electron), the instantaneous polarization of the medium can be expanded in series of

the electric field as:

P(r, t) = P9)(r, t) + 5(2)(r, t) + P3)(r, t) + (2.1)

where the n-th order term

nonlinear susceptibility X(n)

, dw F
Pi (r, t) =co I 2 ... I

in the polarization expansion is related to the n-th order

by:

dwn (n)

27r (wi, w2, .Wn) x

El (r, wi)E (r, w 2 )...Ein(r, Wn)e-i(1+2+...+Wn)t
(2.2)

The indices refer to the spatial coordinate system and E(r, w) is the Fourier transform of

the electric field:

E (r, w) = dt(r, t)e''t
(2.3)
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In the Fourier domain, the polarization spectrum is generated by the mixing of the dif-

ferent oscillation frequencies of the electric field:

Pi(r, w) = Jd ... ] 2 X (w, 2 , ...wn) X (2.4)

Ei (r, )Ei (r, L02 ) ... Ei (r, Wn(W - W 1 - W2 - ... n

As a reminder of the 6-function, the notation X(n) (-; W1, W2 , ... Wn) with w = W1 + W2 +

...wn is generally used. X(n) is an (n+1)-th order tensor mixing the different spatial

projections of the electric field. For simplicity and without loss of generality for the

topics covered here, we can ignore the vectorial character of the electric field and the

polarization density, and treat the susceptibility as a scalar field. To first order, the

expansion of the polarization with the electric field gives the linear susceptibility of the

medium X( , which dominates the answer of the medium in the limit of low power. For

centrosymmetric materials, in which the structural properties are invariant by symmetry

around a center (including gases and liquids), the second-order susceptibility X(2) vanishes.

Second-order nonlinear crystals in Optical Parametric Oscillators have played a historical

role in quantum optics and are a widely used source of entangled and squeezed light.

The third-order susceptibility XM) is thus the lowest order nonlinear correction to the

polarization of atomic gases. The generally complex nonlinear susceptibility defined in

Eq. 2.2 encompasses the non-instantaneous response of the medium and is simplified

when the electric field is restricted to a superposition of quasi-monochromatic waves,

with carrier frequencies wj and slowly varying envelopes Ei(r, t) propagating along z with

wave vectors ki = wi/c in vacuum:

E(r, t) = S £i(r, t)ei(kiz-wit) + c.c. (2.5)

In that case, the response of the medium can be considered instantaneous on the scale

of the slow-varying envelopes of the field, and the polarization can similarly be expanded

as:

P(n)(r, t) = ZP ()(r, t)i(kz-wlt) + c.c. (2.6)

where the carrier frequencies w, are generated by a combination of the electric field carrier
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Figure 2-1: Example of four-photon nonlinear processes. a, Third har-
monic generation, described by x(3 )(-3w1; -wi, w1 , wi). b, Non degenerate four-
wave mixing (x(3 )(-w4; -W 3 , U2 , W1 )). c, Cross-phase and cross-amplitude modulation

( (_ L02) 2,w )). d, Optical Kerr effect (X( 3)(-Wl -W1, W1,W)).

frequencies wl = wi + wj + ... + Wk. We adopted the convention wi > 0 for positive indices

and w-i = -wi and E_, = Si*. The slow varying envelopes are related by:

P1()(r, t) = wX(')(- w , Wj, Lk)Si(r, t)Sj(r, t)...Ek(r, t) (2.7)

Third order nonlinearities in atomic media give rise to the rich physics of four-photon

processes, most notably third harmonic generation and four-wave mixing, illustrated in

Fig. 2-1. In the context of this work, we are interested in two cases of degenerate four-

wave mixing. The first one is the optical (self-)Kerr effect, i.e. the nonlinear response of

the medium to a quasi-monochromatic beam E1:

x(-wi; wi) =x%1 (-w_ wi) + x( -, ) 2  (2.8)

The second is the optical cross-Kerr effect (also called cross-modulation), in which a

field S2 modifies the optical properties of the medium for a distinguisable field 'E:

y(- 1 ; w) = x( 1) -_; w1) + X( 3)(- 1 ; -w 2 , W2 , W1) IE2I2 (2.9)

Optical Kerr media exhibit an intensity-dependent index of refraction n = no + n 2 I, a

phenomenon analogous to the modification of the index of refraction in dielectric materials

proportionally to the square of an applied static electric field, discovered by physicist John

Kerr at the end of the 19th century.
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2.2 Propagation in dielectric media

2.2.1 Propagation in a nonlinear Kerr medium

This section is a brief reminder about the propagation of an electric field E in a dielectric

medium. For a medium devoid of free charges and free currents, the Maxwell equations

reduce to:

2- 1 a2 E 1 a2 P
V 2E - V(V.E) - t2  -- (2.10)

The second term in Eq. 2.10 vanishes for a plane wave and is generally negligible in

the slow varying envelope approximation (see for example [49]). Equation 2.10 can be

further simplified for fields with slowly varying envelopes. Under the assumptions (which

must be valid up to n = 2):

a"e, (Z, t) an-1Ei(z, t) an"E,(Z, t) an-1Si (ZI t)
atn <L an-1 a gn < i an-1

anp, (Z, t) a"~1 NI~z t)
a tn -tn -1 , (2.1)

keeping the lowest order terms in the temporal and spatial derivatives for S and P and

ignoring rotating terms, the propagation of the slow varying envelopes is given by:

I a-6i 1 aEj 'k.
V g,+ + = (2.12)

2ki I Oz c at 2co

We consider a one-dimensional problem in which the amplitude of the field is only de-

pendent on the propagation direction z. We thus neglect the first term of the equation,

although we point out that Kerr-type nonlinearities can have dramatic effects on the

beam profile such as self-focusing. For a one-dimensional Kerr medium, the slow varying

envelope approximation simplifies to (with j = i for the self-Kerr effect):

S 1 i iki 1) ik I 2  (2.13)
az + Ct 2 2

The real part of the susceptibility sets the index of refraction ni = 1 + !yf 1) (w), and has
ik, (1)

been factored out of Eq. 2.13 by the transformation: Ei -+ Ee 2 XR Z. The imaginary part
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governs the linear intensity absorption per unit length in the medium: a = kiX . Kerr

nonlineartities induce, in the absence of linear absorption for Sj, a nonlinear phase shift

(for an homogeneous medium of length L and monochromatic fields) cXPM = X (3) 2

and a nonlinear two-photon absoprtion a = kiL x, iE3i2

2.2.2 Group velocity, bandwidth and dispersion

In this section, we consider the effect of the frequency dependence of the linear sus-

ceptibility for time-varying fields, typically pulses, which are broadened in the frequency

domain and sample this dependence in near-resonant systems. The resulting effects, such

as bandwidth, reduced group velocity and group velocity dispersion, can play a major role

for phenomena with narrow resonances such as EIT. For a linear susceptibility x, relating

the polarization density of the medium and the local electric field according to:

P1(z, 6w) = CoX(wi + 6w)e(z, 6w) (2.14)

where the slow varying envelope P1 and .1 are non-zero over a small range of frequencies

6w = w - wi, the Fourier transform of Eq. 2.12 is:

&E1 iow iki
as, - i w 1(z, 6w) = 2 X(wi + 6w) E (z, 6w) (2.15)az C 2

and its solution:

S1 (z, 6w) = 1 (O, 6w)ei( +6u)+e (2.16)

We can expand the linear susceptibility in series of 6w:

1
X(wi + 6w) = X(1) + X'(wi)6w + 1 X"(wi)6w 2 ... (2.17)2

To further simplify the problem, we nullify the linear effects x(wi) = 0 (as is ideally the

case for EIT).

In time domain, the field is given by the Fourier transform of Eq. 2.16:
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E1 (z, t) = d(6w)e-'E1t(0, 6w)eiz(i+Cx )eiz xIw (2.18)

An initial Gaussian pulse with length Tp at the input of the medium E 1 (0, t) = exp (,P)

has a Fourier transform E 1 (0, 6w) = V27rT, exp 2

E1 (z, t) = 27rrJ d(6w)e--i(t-( +#xR)z)e- (r+iz'x") (2.19)

From Eq. 2.19, we can immediately conclude from the substitution t -> t - v9 1 z that

the first derivative of the linear susceptibility sets the group velocity:

C
Vg = c X (WO (2.20)

It is also obvious that the second order derivative affects the pulse width rp as the pulse

propagates in the medium. The Fourier integration yields:

-F 4 1/ - V-iz) 2

E 1 (z,t)= exp (t) (2.21)
(T2 - -'-x"Z) T2(Z) 2T2z

where:

T 2 (z) = - 2 xIZ ( 2 - ( x2  (2.22)

Up to second order in the expansion of the linear susceptibility, the Gaussian profile

of the pulse is conserved with a width r(z) increasing as the pulse travels through the

medium at group velocity vg. The broadening of the pulse is caused by two separate

effects originating from the second derivative of the susceptibility. The first effect is the

bandwidth (for a transmission peak, x' < 0). When an initial short pulse (T2 < I Ix'/I L)

is broader than the bandwidth of the medium in frequency domain, the high frequency

components of the slowly varying envelope are absorbed by the medium, erasing the sharp

features of the pulse in time domain by dissipation. The second mechanism causing pulse

spreading is the group velocity dispersion vg/Bo oc X': the variation in group velocity

across the different frequencies composing the wavepacket travel causes the slow varying

envelope of the pulse to sprawl dispersively (i.e. without losses).
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2.2.3 Solitons

Group velocity and bandwidth play an essential role in EIT. An interesting example

of higher order contributions of the susceptibility in nonlinear optics is given by the

physics of solitons in Kerr media, where dispersion and Kerr nonlinearities (effectively an

intensity-dependent group velocity) have counteracting effects and allow the propagation

of a "solitary wave" without deformation. The Fourier transform FT of equation Eq. 2.13

governs the evolution E1(z, 6w), similarly to Eq. 2.15, assuming X(Nw() = 0. Here, we

included the frequency dependance of the linear susceptibility to second order:

DC1 iow =iki 1 k k
1i = X X( 1 Y6+WXFi + ik, x(1)"6W2,F + 'tk, FT (X (3) 1 (z, t)12 E1 (z, t)) (2.23)09z c 2 4 2

Going back to time domain through the inverse Fourier transform, we obtain the propa-

gation equation for E1(z, t):

E1 1 a41 iki (1),,Da2E+ ikl( 3 ) I 2 (+ -- = -x + -X |E2i (2.24)
Dz Vg9 t 4 at2  2

In the coordinates system (Z = z - Vgt, z), the equation takes the form of a nonlinear

Schroedinger equation (NLSE) where z plays the role of time and Z the role of space

(we assume X"M and X( are real, i.e. that the susceptibility of the medium is purely

dispersive, as is typically the case far off resonance):

.61 -I (! g a2E, ki
_ -Z 2 -X(3)- - I 12 (1 2.25)
(9z 2 &j, Z 2

The effective mass originates from the group velocity dispersion: m- 1 = a, vg(wi). A

particular solution of the NLSE when m and XN are of same sign is the temporal soliton

[50]:

exp (i kiX(3)ES2 Z)E(z, Z) = Es c (2.26)
cosh(Z/a)

where the spatial extent of the soliton a depends on the peak electric field amplitude E,

as:
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- 2
a = 2  (2.27)

kjX(3)E2

Optical solitons were first proposed in the 1970s as a mean to increase the digital data

rate in fibers limited by pulse spreading[51].

2.3 Nonlinear Lorentz model

The Lorentz model of an elastically bound electron correctly predicts the linear response of

the medium for atomic gases[50] and can be used to estimate the strength of the nonlinear

susceptibility [49]. The first centro-symmetric correction to the harmonic potential is a

quadratic potential U = -jmwor 2 - mbI jr 4. The equation of motion for the electron

becomes:

r - FF+ (w + b Ir12)r?= -eE/m (2.28)

In absence of the correction term, the damped harmonic response of the system to

the drive of the electric field oscillating at w is the well-know Lorentzian response near

resonance (1w - wol ~' < wo, w), X() = -Ae 2D()~- 1 ~ (w.-d-r', where:

D(w)=w -w 2 +ifw. (2.29)

For b f 0 the system can be solved perturbatively. For a superposition of monochromatic

fields: E = E2 ie'wit + S-eiw-it, the polarization is expanded as:

r = (Z (1)(w4)8 S + Z X(2)(Loi + L)),'& +± Z (3)(wLi + Wi~ + W046&ji'Fik+
\ i,j i,j,k

(2.30)
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Up to third order, the susceptibilities satisfy:

-e 2  = X() (w) x (w2 _ L + iFwo), (2.31)

0 = X + w) x (2 _ (w + w) 2 + iI'(wi + wi)), (2.32)
oP + X LWWW X w)0w~w)±F~~w w) (2.33)

+jf2 02 X (1) (Wi)X 1 (w, Gj)x(1)P(k),

yielding X(2 )(Wi + wj) = 0, as expected from a centrosymmetric material, and the third

order nonlinear susceptibility

X ( + W, + wL) = b 3 [D(wj + wj + Wk)D(wj)D(wj)D(wk)1- 1, (2.34)
in E0

which simplifies to

X(3)(w) = b D [D(w) 3D(-w)]- 1  (2.35)

for a Kerr medium. This simple model underlines a crucial limitation for most nonlinear

media: the third-oder nonlinear susceptibility is simultaneously resonant with the linear

susceptibility. To avoid linear absorption, it is necessary to largely detune the field from

the atomic resonance, which results in a large suppression (to the power 4) of the nonlinear

susceptibility, and conventional material are strongly dominated by linear effects. The

highest values for the nonlinear susceptibility in the strongly detuned regime are achieved

for a red-detuned field w < wo , for which D ~ .

We can also extract order of magnitudes for the nonlinear susceptibility from the

bound-electron model. An upper-bound for the nonlinear correction b is obtained by

comparing the corrective force to the restoring force. For a typical atomic dimension

given by the Bohr radius ao, the perturbation due to the electric field equals the force

exerted by the nucleus on the electrons for b a' ~ W2. Using D = W' and an atomic

density (for a solid) I = ao3 , the third order nonlinear susceptibility is limited to:

4 -6

S < ~ 10- 16V- 2 m 2  (2.36)m c0 ag

Measured values for conventional materials are summarized in [49]. Most conventional

37



I-a D6..I3 A~ 1T4) C 06
2) 3) A, 2

IF r

------ 4 13) Q r

2 ) ) )

Figure 2-2: Third-order nonlinearities in multi-level atoms. a, Cross-modulation
in a 3-level atomic system. To avoid strong linear absorption, it is necessary to operate at
large detuning A1 with respect to the intermediate state 12), which weakens the nonlinear
two-photon absorption or cross-phase modulation. b, EIT-based nonlinear optics. Under
BIT conditions, the linear susceptibility vanishes while a third-order nonlinear susceptibil-
ity is induced by the additional switch field Qs. c, Rydberg-blockade mediated nonlinear
interactions. At large enough probe intensity, the Rydberg level is detuned out of reso-
nance and the effect of the control field is cancelled. The susceptibility of the medium is
then given by the bare Ii) --+|2) transmission. (Notations are defined in the text).

materials such as glass, crystals, liquids, gases have a third-order nonlinear susceptibility

ranging from 10-22 V-2 m2 to 10-19 V- 2 in 2 . Certain nano-particles and polymers achieve

third-order nonlinear susceptibility up to 10-16 V-2 in 2 . For single photon applications,

the proper figure of merit is the product of the nonlinear susceptibility by the bandwidth

of the system, which determines the minimum length of a single photon pulse.

2.4 Nonlinear optics in 3-level atoms

In media with narrow and well defined optical resonances, typically atomic gases, the
level structure can be exploited to optimize multi-photon resonances and enhance the

nonlinear processes. In such systems the susceptibility can be precisely calculated from

the Bloch equations (see for example Appendix A), which include decay and decoherence

and reduce to a system of linear equations in the steady state regime.
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The simplest resonant atomic system exhibiting third-order nonlinearities is an ensem-

ble of 3-level atoms. We consider a ladder-type level scheme where the excited states 12)

and 13) have a finite lifetime F2 and F3, and the probe (respectively switch) field couples

the |1) -- 12) (respectively 12) -> 13)) transition with Rabi frequency Q, (Q,) and detun-

ing A1 (A 2 = 6 - A 1 ) (see Fig. 2-2,a). The Bloch equations in the steady-state regime

and under the approximation that the atoms populate principally the ground state yield

the susceptibility for the probe field = X to lowest order in Q, as a function of the

absorption length of the medium 1a = a-o (where o is the resonant atomic cross-section

for the probe field) (see Eq. A.12):

i 72 - S ( 1 2

1 ~. - I -- (2-37)
21a (172 - 2iA1) -(F3 - 2i2F2 - 2iA1)

The first term in Eq. 2.37 is the characteristic linear Lorentzian absorption profile

with peak absorption OD = f la'dz. Due to the large linear absorption, it is necessary to

operate at large detuning A1 > F2 where the intensity attenuation is ODF72/(4A2) (for a

corresponding phase-shift OD1F2/(4A 1 )) in the absence of switch field. The second term

is the cross-Kerr nonlinearity with the switch beam, which induces two-photon absorption

and cross-phase modulation. At large intermediate detuning A, > r2 and at two-photon

resonance (6 = 0), the presence of the weak Rabi-frequency Q. increases the absorption

per unit length of the medium by a factor 1 + Q2/( 21 3 ). This expansion is valid in

the limit f < F2F3 for which the nonlinearities are negligible with respect to the linear

absorption. The opposite regime, Q2 > 1213, corresponds to EIT (see Appendix A).

Cross-phase modulation (XPM) is obtained by introducing a finite two-photon detun-

ing 6 to avoid two-photon absorption. For A 1 > F2 and 6 > 13, the switch beam induces

a nonlinear phase-shift of the probe beam OD 16 'gII1 2 . The nonlinear phase-shift is

strongly weakened by the large detuning from the intermediate state A1 and is negligible at

the low light intensities provided by few photon pulses. The physical interpretation for the

cross phase modulation in the limit of large switch field detuning is simply that the Stark

effect of the switch field detunes the intermediate level 12) by an amount |I| 2 /4(6 - A )

which modifies the linear response to OD7 2/[4(Ai+IQs12 /4(6-A 1 )] ~ OD 2 (1- )

for 6 > A 1 . Finally, another figure of merit for the cross-phase modulation is the ratio

Q2/(1( 2 6) between the absorption (here mainly linear) and the nonlinear phase-shift.
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Two-photon absorption and cross-phase modulation in atomic ensembles illustrate the

dominance of linear effects on nonlinear processes in resonant multi-level systems. The

necessary large detunings has so far prevented the observation of nonlinear phase-shifts

larger than a few tenths of milliradians per photon [52].

2.5 EIT-enhanced nonlinear optics

As described in Appendix A, a strong coherent control field meeting the two photon reso-

nance condition cancels the linear absorption and phase shift of an ensemble of three-level

atoms. One of the most remarkable properties of EIT is the persistence of third order non-

linearities even as the linear susceptibility vanishes, as pointed out by Imamoglu, Harris

and coworkers in the 1990s[39, 40, 53, 54]. As a result, under EIT conditions, four-wave

mixing occur in the absence of linear absorption and phase-shift (see [55] and references

therein). This starkly contrasts with traditional media where the nonlinearities amount to

a negligible fraction of the linear effects at low probe power. Here, we focus on cross-Kerr

type nonlinearities between a probe field and a switch field (of Rabi frequency Q,) in a

N-type level scheme [40, 53, 54, 56]. The switch field couples the ground state carrying

the spin coherence 13) to a fast-decaying state 14) (see Fig. 2-2,b). The extra ground-

state decoherence introduced by this coupling modifies the propagation properties for the

probe field, otherwise traveling without loss under EIT conditions. The susceptibility of

the medium (derived from the Bloch equations) is:

i =F 2 7 x (2.38)
21a 7Y(F 2 - 2iA,) +

1+ j|j , 2 s 12
-(F4 - 2iA )(Y(F 2 - 2iAI) + 2) 2

where we assumed that the probe and control field match the two-photon resonance with

the 1) -+ 3) transition. F 2 is the decay rate of the intermediate excited state 12), F4 the

decay rate of the state 14) and y the decoherence between ground states 11) and 12). In

Eq. 2.38, the linear EIT susceptibility is modified by a correction term corresponding to

the cross-Kerr nonlinear susceptibility.

40



We first turn to all-optical switching for the resonant case AP = As = 0. The

residual linear absorption of the medium OD-Y/'YEIT (where 'YEIT = Q2/F 2 ) is amplified

by the switch-induced decoherence y -+ -y + Q2/F 4 , resulting in a nonlinear absorption

OD/(F4-YEIT). The nonlinear effects are strongly enhanced as the EIT linewidth 7YEIT

is narrowed. The EIT linewidth is only limited by the decoherence rate -Y due to the

linear absorption, and in the limit of small decoherence rates -Y < F2 can be made much

narrower than the excited state linewidth. A figure of merit for all-optical switching is the

ratio between nonlinear and linear absorption: Q2/(IF47), which is improved by a factor

1'2/Y with respect to the 3-level system introduced in the previous section.

EIT-enhanced XPM are obtained by detuning the switch field away from resonance. In

the limit A 3 >> F 4 , the XPM phase-shift is ODQ2/(7YEITA3). The ratio between the non-

linear phase shift and the absorption in the medium is A 3 /F 4. In contrast to conventional

XPM in a 3-level medium, this number does not depend on the switch field intensity. For

a given Q5, the EIT linewidth will determine the nonlinear phase-shift whose upper bound

OD Q/( -YF 4 ) can be made arbitrarily large in the absence of decoherence. Experimentally,

low decoherence rates are limited by the 2-photon laser linewidth, Doppler broadening,

atomic collisions, inhomogeneous magnetic shifts or trapping potentials. It is possible to

compensate for these effect to obtain coherence time of a few seconds [57] using specific

clock transitions and compensation for inhomogeneous trapping shifts. With conventional

lasers used in atomic physics and spectroscopy based frequency locks, the typical laser

linewidths are on the order of 100 kHz, and are generally the limiting dephasing factor

in cold dilute gases, setting the typical EIT linewidth -YEIT to a few MHz, on the order of

the excited states atomic linewidths.

The photon-photon interaction can be characterized by the magnitude of the Kerr

effect obtained for bandwidth limited pulses containing a single photon. A pulse acquires

a group delay Td = OD/YEIT in the medium. The switch pulse is not slowed down by

the medium, and covers the delay time of the probe pulse when its length Ts equals the

probe pulse delay (in the large OD limit where the probe pulse is entirely stored in the

medium). The Rabi frequency of a single photon switch pulse is then:

Q2 s F4 1 as
- - -7EITF4 (2-39)

A - OD A
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in terms of the atomic cross-section for the switch field o-, = II3412 2w.9 (134 is the dipole

matrix element for the switch transition), and the transverse area of the switch beam A.

We used the energy of a single photon pulse ti, = fV coE 2 ~ cocrAE2 . As a consequence,

typical quantum nonlinear effects, such as conditional absorption and phase-shift, are on

the order of the cooperativity:

Os =,(2.40)A

which is the probability for a photon to be scattered by a single atom. In the polariton

picture (see Chapter A), a probe photon traveling in the medium is mapped onto an

coherently shared atomic excitation carried by an atom in state 13). The photon-photon

interaction will thus be consequent if the switch photon has a large interaction probability

with the atom on which the spin coherence is imprinted.

As a consequence, optical nonlinearities are only achieved at the single-photon level for

a strong transverse light confinement over the extent of the medium. The resonant atomic

cross section is, for the strongest transition between magnetic sub-levels, -o = -2 and

large nonlinearities require transverse light confinement to better than a wavelength. In

Chapter 3, we describe an experiment where cold atoms are loaded into a hollow-core

fiber, giving a cooperativity q - 0.5 over the extent of the medium and which displays

nonlinearities for a few-hundred photons.

It is nevertheless possible to beat the cooperativity limit by modifying the group

velocity of the switch pulse[58]. For a matched group velocity with the probe field, the

switch pulse width can be reduced to its bandwidth limited value Tp = rd//OD: the

photon-photon interaction then scale as ODq. An even stronger enhancement is offered

by Stationary Light Pulse techniques [59, 60], for which the nonlinearities scale linearly

with OD. Experimental progress towards the implementation of these ideas is reported

in Chapter 4.

2.6 Rydberg EIT

The properties of Rydberg atoms are described in Chapter 5. The two main characteristics

that distinguish them from the low lying excited states are the long lifetime (typically

~ 100 ps for the 10OS 11 2 state of 8 7Rb including room-temperature blackbody radiation)
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and their large dipole moment. The large dipole moment results in long range Van

der Waals interaction which can shift the Rydberg levels by several tens of MHz for

atoms located at distances as large as 10 pum. This concept leads to the so-called dipole

blockade, which prevents simultaneous optical excitation of several atoms in a certain

volume (see Chapter 5). Due to their long-lived states, Rydberg levels can be used as

a metastable state to enable EIT in an otherwise opaque medium. If a strong control-

field is resonant with an (intermediate) excited- to Rydberg- state transition, a single

probe photon coupling the atomic population in its ground state to the intermediate

excited state will propagate in the medium under the form of a dark state polariton

(see Appendix A). The dipole-dipole interaction strongly modifies the properties of the

medium for multi-photon states propagating simultaneously by tuning the Rydberg of

level far out of resonance, effectively cancelling the effect of the control field for most of

the photons.

The dipole-dipole interaction is described by the interaction Hamiltonian:

N
= h v jcr33cr3 (2.41)

ij=1;*Aj

where hVij -06/|# - i16 is the Van der Waals interaction between two atoms located

at i and 'y. The blockade introduces correlations between the atoms, which are mapped

onto the polarization of the medium. The nonlinear susceptibility of the medium in the

low density limit can be derived from a mean-field approach[61]. For Al = A 2 = 0, the

polarization of the medium is given by [61]:

1 _72 1 p Q(r) ,4  2 |Qp(r')12 
C

x(r ) = + 2 p dr (2.42)2Q7+ 2 21, (Q2 - C)Q2 + 71 2 + +'YF) + + C y + Ir-r

The first term, dominant at low probe intensity, describes the EIT. The finite deco-

herence rate y creates negligible absorption in the medium in the limit 'YEIT > Y. The

second term describes the third order non-linearity introduced by the Rydberg blockade.

In the limit where 7EIT > y and Qp(r') = Qp(r') (i.e. for nonlinear effects weak enough

not to create strong correlations in the probe light), the integral can be expressed as a

function of the blockade radius rb = I2C 6 r/Q211/6:
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, 2|Qp(r')|12 C6 sgnC6 -i213
dr Q jP rr sgn(C 6)-i 7r2b (2.43)

2 + + f C6/6 F 3
Ir-r

and the nonlinear susceptibility of the Rydberg medium in the low saturation regime is:

S1 4 3|IQ|2
sgn(C6))--1rb 14 3 2P (2.44)2 i-snC 21a 3 Cro

To within a factor 7r/2, the imaginary nonlinear susceptibility is the product of the 2-

level (11) -* 12)) linear response X12 = i(2la) -1, the average number of atoms per blockade

volume NB = !1rrb3p and the fraction of the atomic population in the Rydberg state under

EIT conditions, Q2/Q2. At probe intensities corresponding to a number of Rydberg atoms

per Rydberg blockade approaching one (NB Q/Q2 ~ 1), the susceptibility becomes that

of a 2-level medium due to the cancellation of the control field by the large detuning of the

Rydberg states. Rydberg EIT simultaneously provides low linear absorption and large

non-linearities. In contrast to EIT enhanced nonlinearities introduced in the previous

section, the ratio between the nonlinear and linear absorption can be made arbitrarily

high by increasing the atomic density of the medium. To characterize the strength of

the nonlinearity at the single-photon level, we again consider a bandwidth-limited single

photon pulse of duration T, ~.' O/5IT. The nonlinear effects in the medium are on the

order of NBT where q is the single-photon single-atom cooperativity. The medium can

be described in terms of super-atoms, made of Nb atoms comprised in a single Rydberg

volume, with a cross-section Nbao (see Chapter 5). In the limit where the transverse

profile A is smaller than r2, the order of magnitude of the single-photon nonlinearities is

given by the optical depth over a blockade length of the medium, ODB = puorb.

Dispersive nonlinearities are obtained by introducing a large detuning A of the probe

and control field from the intermediate transition while maintaining the two-photon res-

onance,. The idealized response of the medium in the large blockade fraction regime

(NBQj/Q2 ~ 1) is that of an ensemble of an off-resonant ensemble of two-level atoms

with absorption - ODF 2 /(4A 2 ) and phase-shift ~ ODF/(4A), enabling non-dissipative

interactions at large detunings A > F. Formally, this result is obtained upon the substi-

tution F -+ F - 2iA and expansion to lowest order in F/A of the integral in Eq. 2.43:
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where the off-resonant blockade radius is rB= (4|C6A1 / ) [62].

As expected, to within a constant of order unity, the response of the system is the

product of the two-level linear response and the number of Rydberg excitation per block-

ade volume. The mean-field approach used in the susceptibility calculation is valid in

the limit where the number of Rydberg atoms per blockade volume is much smaller than

one, for example for atomic gases with low atomic density [63, 64]. At higher densities,

nonlinear effects between few photons introduce strong correlations in the probe field. Ex-

perimental results in the high density limit as well as a full quantum analysis are carried

out in Chapters 7,8 and Appendices C,D.
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Chapter 3

Few-photon nonlinear optics using

cold atoms in a hollow-core fiber.

3.1 Overview

The implementation of few-photon nonlinear optics has until now only been feasible in the

context of cavity quantum electrodynamics (QED) when single quantum emitters, such

as neutral atoms or quantum dots, are placed inside narrow-band, high-finesse cavities.

In these systems, the original nonlinearities of the optical medium created by the single

emitter are amplified by the cavity finesse to the point where they can be controlled by

the field of a single photon. Over the last decade, several experiments have demonstrated

nonlinear optical phenomena with single intracavity photons [41, 65, 43, 42. However,

the large nonlinearities achievable in these cavity-based systems come at the price of

technological complexity, limitations imposed by cavity bandwidth, and often times sub-

stantial losses at the input and output of the cavity. The work presented here uses an

alternative approach, which is based on coupling single emitters or ensembles of emitters

to a propagating light field confined to an area comparable to the diffraction limit. Such

tight confinement can be achieved either in free space by focusing the light beam with a

large numerical aperture lens [66] or under conditions provided by a photonic waveguide.

In particular, systems based on hollow core photonic crystal fibers [67], hollow antireso-

nant reflecting waveguides (ARROWs) [68], optical nanofibers [69], optical nanocavities

[70] and nanostructure plasmonic waveguides allowing subdiffraction propagation have all
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Figure 3-1: Photonic Crystal Fiber. (A) Scanning electron microscope (SEM) image
of a cross section of the hollow-core photonic-crystal fiber from Blaze Photonics used in
the experiment (model HC-800-02). (B) Detail of the photonic crystal region of the fiber
with the hollow core in the center. Manufacturer's specifications of (C) losses of guided
mode propagating in the fiber as a function of wavelength and (D) near field intensity
distribution of the guided mode.

been actively explored in the last few years.

Hollow core photonic crystal fibers (PCFs, also known as photonic bandgap fibers),

that guide light through interference [71] instead of total internal reflection [72], are now

available off the shelf and can be integrated with conventional optical fibers [73]. When

filled with molecular gas, these fibers have shown significant enhancements in the efficiency

of processes such as stimulated Raman scattering [74] and four-wave mixing [75]. Recently,

both room-temperature and ultra-cold atoms have successfully been loaded into PCFs

[76, 77, 78] and observations of electromagnetically induced transparency with less than a

micro-Watt control field have been reported for the case of room temperature atoms [76].

Here, we review our experiments that demonstrate the strong coupling between light

and laser-cooled atoms inside the hollow core PCF and allow us to implement all-optical

switching controlled with light pulses containing as few as several hundred photons and

few atoms detection.

The atoms are first laser-cooled and collected in a free-space magneto-optical trap and

then transferred into a 30mm long piece of hollow-core fiber (Fig. 3-1) with a procedure

detailed in the following section. Once inside the fiber core, the cold atoms are confined
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in a red detuned dipole trap [79]. The trap is created with an off-resonant beam guided

by the fiber, and it prevents the atoms from colliding with the fiber wall. We probe the

atoms, which form an approximately 1cm long cloud inside the fiber core, by monitoring

the transmission of very-low-power (- 1 pW) probe beams that can be coupled into the

fiber piece from either of its ends. After the probe beams emerge from the fiber, they

are collimated by the coupling lenses and then passed through a series of optical filters

that separate the probe photons from other light beams coupled into the fiber during the

experiments. Finally, the probes are coupled into single-mode fibers connected to single-

photon counters. The use of single-mode fibers provides spatial filtering that ensures

that only photons propagating in the guided mode of the PCF are detected. When the

frequency of the probe laser is scanned over an atomic resonance, we observe in the

transmitted signal an approximately Lorentzian absorption line-shape from the atoms

present inside the fiber:

T = exp - ,) (3.1)
1 + 4( r)2

where F is the linewidth of the excited atomic state and A, is the detuning of the probe

laser from resonance. The optical depth OD is a figure of merit for the strength of the

observed absorption. In general, OD depends on the atomic density integrated along the

fiber, and the strength of the considered atomic transition. Since the atoms are confined

within the optical trap created by the guided light inside the fiber, the radial extent

of the atomic cloud is smaller than the beam area of the single-mode probe light beam

propagating through the fiber. To get an accurate relation between optical depth and

atomic density inside the fiber, we have to take into account the atoms' radial distribution

in the probe beam. In particular, an atom at the edge of a beam experiences a smaller

electric field and therefore absorbs less light than an atom on the beam's axis. Assuming

a Gaussian beam with waist w, and a radially symmetric atomic density n(r, z), the

expression for optical depth on resonance is

2 rco-e 2r
2

ODfiber = 2 27r n(z, r)cCG UOTe dz (3.2)

where co - = 3 is the maximal atomic cross-section, and CCG is the Clebsch-Gordon27r

coefficient for the specific atomic transition being used. In general, (3.2) reduces to a
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Figure 3-2: Loading procedure into the hollow core fiber. (a) Atoms collected
in a MOT above the fiber. (b) Absorption image of the atoms in the magnetic-funnel
area above the fiber. (c) Once near the fiber tip, the atoms are transferred into a red-
detuned dipole trap inside the fiber. (d) Contour plot of the dipole trap potential above
the fiber tip resulting from the diverging beam emerging from the fiber tip (located at
the origin). The contour labels correspond to a 10 mK deep trap inside the fiber resulting
from -25 mW of 802 nm trap light inside the fiber.

simple expression that shows that OD is proportional to the number of atoms Nt inside

the fiber:

ODfiber= 7 Nat 2cCGO . (3.3)

The prefactor 7 is given by the radial distribution of atoms in the fiber-confined cloud.

The highest value of q corresponds to all atoms being localized on the axis of the fiber,
r2

in which case 1 = 2. In the case of a Gaussian radial density distribution n(r) = noe ,

1 = .) The optical depth of the atomic cloud inside the fiber is thus determined

by the number and temperature of atoms inside the fiber. In particular, higher atomic

temperatures lead to more axially delocalized cloud (increased xo), which in turn results

in decreased OD. Assuming an atomic temperature T 1 ImK and using the measured

beam waist of guided light inside the fiber wo = 1.9 t 0.2 pm, - 100 atoms inside the

fiber create an optically dense medium (OD = 1) when probed at the transition with the

highest Clebsch-Gordon coefficient.

3.2 Loading procedure

The starting point of our fiber loading procedure is a standard six-beam magneto-optical

trap (MOT) located approximately 6mm above the upper tip of the fiber piece (Fig. 3-
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2a). The required light fields are provided by three crossed retro-reflected beams with

one-inch diameter, while the magnetic field is realized by the two circular coils inside the

vacuum chamber operated in an anti-Helmholtz configuration. During a - Is loading

phase we collect about 101 87Rb atoms at a temperature of ~ 100 pK in the MOT from

the room-temperature rubidium vapor produced inside the vacuum chamber by a heated

dispenser. Following this step, the magnetic fields are ramped up over a period of 40 ms

to compress the cloud, the frequency of the trapping beams is moved from the initial 15

MHz off-resonance to 50-60 MHz detuning, and their power is reduced by a factor of - 4.

Finally, the magnetic fields are shut off, and the atomic cloud is allowed to slowly expand

for 10 ms in the optical molasses of the intersecting beams as it undergoes polarization

gradient cooling. This last cooling step lowers the cloud temperature to ~ 40 AK.

After the laser-cooling stage, we transfer the atoms downwards into the vicinity of

the fiber tip (Fig. 3-2b, c) from where they are loaded into the fiber. Over the course

of the experiment, we have implemented different procedures for this transfer, which are

described in the following.

The original transfer procedure conceptualized during the design of the experiment is

based on magnetic guiding of the atoms. In this procedure, after the initial cooling stages

in the MOT and optical molasses are completed, the atoms are optically pumped into the

IF = 2, mF = 2) state and then transferred into a magnetic quadrupole trap formed by the

same coils which provide the MOT field. This trap is then adiabatically shifted towards

the fiber tip by adding a vertically-oriented homogeneous offset field, which displaces the

zero-field center of the quadrupole trap. In addition, current in the magnetic funnel wires

is turned on, creating a transverse quadrupole field, in which the gradient increases with

decreasing distance from the upper fiber tip. At the fiber tip this transverse gradient

reaches - 6 kG/cm, resulting in strong radial compression of the magnetic trap (Fig. 3-

2b). The complete transfer of the magnetic trap towards the fiber takes place over the

course of 45 ms. This brings the atoms within a few hundred micrometers of the fiber

tip. During the transfer stage, the fiber-guided dipole trap is turned on, so that when

the atoms start approaching the fiber face, they are captured by the expanding beam of

the dipole trap and pulled into the hollow core of the PCF(Fig. 3-2c, d). At the end of

the transfer, all magnetic fields are shut off and the atoms are probed. With this method
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Figure 3-3: Hollow beam atomic waveguide. (a) Schematics of the optics used for
the hollow beam generation. (b) CCD image of the hollow beam intensity distribution
about 1 mm above the fiber face. (c) Fluorescence image of the freely expanding atomic
cloud 20 ms after its release from the optical molasses. (d) Fluorescence image of the
atomic cloud guided by the blue detuned hollow beam 20 ms after the optical molasses
beams are turned off. (e) Absorption image of the atoms collected in the hollow beam
guide ~1 mm above the fiber tip. Here, the hollow beam is intersected by a blue detuned
Gaussian beam focused by a cylindrical lens into a sheet.

we observe the loading of up to - 10 4 atoms into the fiber, equivalent to a maximum

OD ~ 50.

While this procedure loads atoms into the fiber reliably, it turns out to have significant

drawbacks. When current is pulsed through the funnel wires, the resulting heat pulse

causes the fiber tip to shake slightly. Additionally, the cumulative heat of the repeated

experimental cycles causes drifts in the overall fiber coupling efficiency. This requires the

system to run for about two hours before the fiber position stabilizes and after that the

funnel needs to be cycled constantly to maintain the steady-state temperature of the fiber

mount.

The problems associated with the pulsed currents required for the magnetic transfer

led us to the development of an all-optical transfer method. Instead of capturing the initial

MOT in a magnetic trap we confine it transversally by an optical guiding potential. This

atomic guide is based on a hollow-beam blue-detuned dipole trap. The hollow beam is

generated using a combination of lenses and axicons (conical lenses) sketched out in Fig. 3-

3a. This setup allows us to generate a vertical hollow beam that is close to collimated
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both in diameter and wall thickness in the region between the MOT site and ~ 1 mm

above the fiber tip (Fig 3-3b). The idea behind this particular lens combination is to

turn "inside out" an axicon-generated quasi-Bessel beam, which leads to an excellent

suppression of light in the hollow part of the resulting beam. One practical constraint in

our implementation of this optical guide is that it has to pass through the f = 20 mm

collimation lense above the fiber. Consequently, the other optical elements, located outside

the vacuum chamber, have to be matched to this lens. This leads to a combination of

optics consisting of two 1750 axicons (Greyhawk Optics) and a 75 cm focal-length lens

between them. Fine tuning of the hollow beam shape is done by adjusting the collimation

of the input Gaussian beam.

The atom-guiding performance of the blue-detuned hollow beam generated with this

setup can be seen in Fig. 3-3 c, d and e. The hollow beam with P 40 mW and

A ~ 780.20 nm is turned on at the end of the atom cooling stage, and the atoms are then

allowed to free-fall towards the fiber. Comparing the fluorescence images of the freely

expanding MOT (Fig. 3-3 c) and the optically confined cloud (Fig. 3-3 d) shows how the

hollow guide increases the atomic density in the area above the fiber tip, by preventing

atoms from escaping from this region. On the other hand, it can be seen that the cloud

still expands freely in the vertical direction. To also decrease the size of the atomic cloud

in this direction, we add a blue-detuned light sheet perpendicular to the fiber 1 Imm

above the fiber tip. This closes off the optical trap in the vertical direction, creating a

cup-like potential together with the hollow guide, in which the atoms are collected close

to the upper fiber tip (Fig. 3-3e). Once the atoms have accumulated in this cup, the

light sheet is turned off and the atoms again fall freely towards the fiber where they are

captured by the in-fiber dipole trap. With this method we load ~ 3 x 10 4 atoms into the

fiber, which results in a maximum OD ~ 180.

It is interesting to note that we can also load atoms into the fiber by simply releasing

the MOT and letting the atoms fall completely unrestricted. In this case, we observe up

to ~ 5000 atoms in the fiber, which is the same order of magnitude as the results achieved

by the other transfer methods. This is due to the fact that all our transfer methods are

adiabatic, i.e. there is no additional cooling of the atoms after the optical molasses stage.

Consequently, any transverse compression of the atomic cloud will result in an increase
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of its temperature, which in turn reduces the chance of individual atoms being loaded

into the fiber dipole trap. In particular, most of the transverse compression happens in

the last < 100 pam above the fiber, where the potential from the fiber guided dipole trap

becomes significant (Fig. 3-2d). Only a fraction of the atoms passes through this area

into the fiber. The majority has too much kinetic energy which results in trajectories that

do not end inside the fiber, but instead lead the atoms back upwards, anagolous to the

angular momentum barrier in a magnetic bottle trap. To increase the number of atoms

passing this barrier, optical cooling during this final compression stage is required. In our

current setup, the magnetic funnel wires block the optical access to this region, which

prevents us from implementing this improvement.

3.3 Atoms inside the fiber

After the end of the transfer stage, we wait -5ms before we perform the actual in-fiber

experiments, which allows the captured atoms to move into the fiber, and atoms remaining

above the fiber to expand sufficiently to not cause any residual absorption. Additionally,

if magnetic guiding is used in the transfer process, this step gives the transient magnetic

fields time to vanish. Typically, the duration of the actual experiments ranges from 100 to

400 ps. The whole cooling, trapping, and data collection cycle is repeated every 1.5s. For

the probe transmission scans such as those shown in Fig. 3-4, each data point corresponds

to a single run of the experiment (or multiple runs in the case of data averaging). Between

these runs, the frequency of the probe laser is changed, and a new atomic sample is

prepared in the fiber.

For the dipole trap inside the fiber we couple P = 25 mW of light with wavelength

A = 802 nm into the fiber. This provides a trap depth of ~ 10 mK inside the fiber, while

the detuning from the rubidium lines is sufficient to allow for easy optical filtering and

negligible residual heating during the experiments.

Absorption profiles associated with atomic resonance lines are the signature of inter-

action between atoms and light guided through the PCF. The dipole trap introduces a

power-dependent, radially varying AC-Stark shift [79], which results in broadening and

a frequency shift of the absorption profile. For actual experiments, we usually want to
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Figure 3-4: In-fiber optical depth. Frequency scan over the D 2 line of "7 Rb for ~ 26000
atoms loaded inside the fiber. The atoms are optically pumped into the F = 2 state and
then probed with linearly polarized light over the three transitions accessible from this
state, F = 2 -- F' = 1 (left), F = 2 -+ F' = 2 (middle), and F = 2 -- F' = 3
(right). The different observed optical depths agree well with a number of loaded atoms
of Na - 30000 when the relative strengths of these transitions are taken into account.

avoid this broadening of the atomic transition. To achieve this, we apply a synchronous

square-wave modulation of the dipole trap and the probe beam with opposite phase at a

rate much higher than the trapping frequency. This results in a time-averaged trapping

potential that is still sufficiently deep to confine the atoms inside the fiber. On the other

hand, during the off-times of the dipole trap, we can perform optical experiments with

the atoms exhibiting their field-free atomic structure. When using this technique and

scanning the probe laser over a particular hyperfine transition, we observe a narrowed

absorption profile. The shape of this resonance is completely determined by the natural

line profile of the transition (Equation 3.1). There is solely homogeneous broadening due

to the large optical depth. The exact frequency of the trap light modulation is adapted

based on the experiments performed. Slower modulation increases the off-times of the

trap light, providing more time for individual experiments. Comparing the observed OD

for different modulation frequencies shows that the slowest modulation we can use before

we observe loss of atoms is - 300 kHz.

Figure 3-4 shows a typical absorption scan when the atoms are initially prepared in

the F = 2 hyperfine ground state and the probe laser is scanned over the D2 transition

while the dipole trap is turned off. The maximum optical depth OD ~ 180 is observed
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Figure 3-5: Cooperativity calibration. Calibration of the cooperativity J in the fiber

by comparing the number of photons absorbed from the pump beam to the absorption on
the probe transition, based on the knowledge of the branching ratios. 500 pump photons
are sufficient to create an optical depth of 1 on the probe transition. Fitting an exponential
(dashed line) to the measured data (red dots) yields 7 ~ 0.42.

on the F = 2 -+ F' = 3 cycling transition when we use the all-optical loading procedure.

While this number grows monotonically with the number of atoms loaded, we cannot

straightforwardly extract how many atoms are inside the fiber from the measured OD.

To measure this quantity Nt we perform a nonlinear saturation measurement based on

incoherent population transfer in our mesoscopic atomic ensemble. The transmission of

a probe beam coupled to a cycling atomic transition, 12) -* 14), is controlled via an

additional pump beam transferring atoms from an auxiliary state 11) into 12) (Fig. 3-

5a). Initially, the state 12) is not populated and the system is transparent for the probe

beam. The incident pump beam, resonant with the 1) -+ 13) transition, is fully absorbed

by the optically dense atom cloud, thereby transferring atoms into the 12) state, where

they then affect the propagation of the probe beam. As demonstrated in Fig. 3-5,b, we

achieve a 50% reduction of the probe transmission with only 300 pump photons. This

corresponds to ~ 150 atoms being transferred into the 12) state, which yields the desired

proportionality constant between optical depth on the considered transition and number

of atoms inside the fiber. From this number we can calculate this conversion factor for

any atomic transition by comparing its strength to the reference cycling transition.

From the absorption scans we cannot infer with absolute certainty that the atoms are

inside the fiber. Atoms trapped in some local potential minimum just outside the fiber

would create an almost identical absorption signal. Such a minimum could form due to
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Figure 3-6: Atoms inside the fiber. (a) Doppler shift of the falling atom cloud observed
by using two probes propagating through the fiber in opposite directions. (b) Lifetime of
the atoms inside the fiber. Inset: A qualitative sketch of the potential along the fiber axis
experienced by the atoms as they load into the fiber-guided dipole trap.

stray trap light at the fiber tip if the fiber is not cleaved properly, for example. Due
to the magnetic funnel wires surrounding the fiber, we cannot obtain a direct image of
the atoms inside or right above the fiber, which would let us determine their position
exactly. For the number of atoms we load into the fiber, detection of atoms exiting at
the lower end is challenging, as we would need to detect very few atoms at relatively
high temperature (- 1 mK) in free space. While this can be accomplished, e. g., by
using an image intensified CCD camera [80] or a channel electron multiplier [77], we
instead confirm that the atoms are loading into the fiber core by measuring their vertical
velocity over an extended period of time. For this, we deploy two probes propagating
in opposite directions through the fiber simultaneously. The observed absorption profiles
show a distinct difference between the frequency centers of the two profiles (Fig. 3-6,a)
after the atoms are loaded into the dipole trap. This frequency difference is the result of
the Doppler shift caused by the vertical motion of the atomic cloud. In the case shown in
figure 3-6,a, the observed shift corresponds to the cloud moving downwards with velocity
0.82 m/s. This shift can be observed for times exceeding 30 ms, which means the atoms
have to be moving downward inside the fiber.

Additionally, we can control the velocity of the atoms inside the fiber in two ways.
In the first way, we can simply change the depth of the fiber-guided dipole trap, which
modifies the kinetic energy picked up by the atoms when they are loaded into this trap.
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The second way is based on coupling into the fiber an additional weak (- lnW) nearly-

resonant red-detuned upward or downward propagating 'push' beam, which allows us

to alter the overall velocity as well as the direction of movement of the atomic cloud

inside the fiber. The light pressure from this beam - depending on the beam's direction,

intensity, and duration - can speed up, slow down, stop, or reverse the direction of the

movement of the atoms inside the fiber, as observable from the Doppler shift between

top- and bottom-coupled probes.

The knowledge of the atomic velocities allows us to estimate the cloud length. In

general, during the loading procedures the atoms arrive at the upper tip of the fiber with

velocities of ~ 0.35 m/s over time intervals ~ 10 ms. Once they fall into the dipole trap

potential, their velocity will reach up to ~ 1.4 m/s, depending on the depth of the dipole

trap inside the fiber. Consequently, during the - 10 ms when the atoms are entering the

fiber, the front edge of the atomic cloud is moving at ~ 1.4 m/s, while its rear edge is

moving at - 0.35 m/s. Based on this, we can estimate the minimum length of the atomic

cloud inside the fiber to be ~1 cm.

3.4 Atom lifetime in the fiber

Once inside the fiber, the atoms are confined by the red detuned dipole trap only in

the radial direction, while in the vertical direction they experience a free fall until they

reach the lower end of the fiber. An example of the measured optical depth of the falling

atomic cloud as a function of time is plotted in figure 3-6b. Here, the zero on the time

axis corresponds to the instant when the optical depth in the fiber is the largest. In this

measurement, each point on the graph corresponds to a newly loaded atomic cloud for

which the dipole trap was kept on continuously until the point in time when the OD

was measured using the modulation described above. The 'kink' in the data near 40 ms

corresponds to the free-falling atoms reaching the lower end of the fiber. Up to this point

the atoms decay out of the dipole trap exponentially with a time constant of ~ 40 ms. We

explain the data after the 'kink' as part of the atomic cloud leaving the fiber and part of

the cloud reflecting back from the potential change associated with the dipole-trap beam

being coupled into the lower end of the fiber.
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Due to the small size of the hollow core, the possibility that attractive forces from the

core wall cancel the dipole trap potential has to be considered. However, comparing the

attractive Casimir-Polder potential C4 /raii created by the fiber wall, with the nominal

value of C4 = 8.2 x 10-56 J m4 [81, 82], with the dipole trap potential shows that attractive

forces become dominant only for distances less than - 100 nm and that the reduction of

total depth of the optical trap is negligible. Therefore, for a fiber with a 7 pm diameter

core, the shape or depth of a red-detuned dipole trap potential in the central area is not

noticeably affected by the nearby walls.

As the atoms move inside the fiber, they are lost from the dipole trap mostly through

two mechanisms. The first and more obvious one is caused by collisions with the back-

ground gas present due to imperfect vacuum within the PCF core. While the vacuum

pressure is 10- 9 torr or less within the general volume of our vacuum chamber, the small

diameter of the fiber core and the associated pumping speeds should result in a signifi-

cantly higher background gas pressure inside the fiber. Considering the expansion of a

room temperature gas in a one-dimensional tube with diameter 7 Pm, we can estimate

that the pressure inside the fiber reaches 10-6 torr after about one day of pumping, while

getting down to 10-8 torr takes a little more than a month. This model neglects possible

outgasing from the fiber walls, which will increase the obtainable steady-state pressure.

From our observations, background gas collisions inside the fiber are not the main limita-

tion on our observed lifetimes. Instead, we identify a second mechanism leading to faster

atom loss, which originates from the presence of higher-order guided modes propagating

through the PCF. These modes are present in all single-mode fibers, as their excitation

during beam coupling from free space into fiber is virtually inevitable. However, these

modes propagate with losses significantly larger than those of the fundamental mode and

generally die away when propagating through fiber pieces longer than 1 Im. For a short

piece of fiber, like the one used in the experiment, the losses of the higher order modes will

not be sufficient to suppress them. These higher-order spatial modes interfere with the

fundamental mode and create a transverse as well as longitudinal variation of the dipole

trap potential. Since this is an interference effect, even small amounts of power propagat-

ing in higher modes can lead to a significant modulation of the original potential. These

potential variations couple the longitudinal velocity of the atoms, which is quite large
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Figure 3-7: Temperature estimate from a TOF measurement. (a) The time se-
quence diagram: After the atoms are released from the trap and then recaptured, the
trap is modulated for the OD measurement. (b) Optical depth of the recaptured cloud as
a function of the release time. The dashed red line represents a fit based on the Gaussian
cloud expansion model.

as the atoms gain kinetic energy from falling into the dipole trap potential (Fig. 3-6b,
inset), to the radial motion of the atoms. This coupling heats the atoms in the transverse

direction and ejects them from the dipole trap. As a result, we have observed a decay

constant of the atoms inside the fiber ranging from 100 ms down to 10 ms depending on
position and the velocity of the atomic cloud inside the fiber. In particular, we observe the
longest lifetimes when the atoms are comletely stopped inside the fiber, while we register

a reduction of lifetime when the atoms move both up or down inside the fiber.

The tight confinement of the fiber-guided dipole trap will increase the temperature of
the atoms compared to the initial 40 pK outside the fiber. To estimate the temperature of
the atoms inside the fiber, we perform a time of flight (TOF) measurement. We shut off
the dipole trap and let the cloud expand, then turn the trap on again to recapture atoms

that have not collided with the wall (Fig. 3-7a). After this, we modulate the dipole trap
in the usual manner and measure the optical depth of the recaptured atoms. Assuming

a Gaussian distribution of the atoms in the radial direction n(r) ~e-(r/ro) 2 , the optical

depth of the recaptured cloud as a function of the release time r, is given by

OD(r,) ODo I - exp 2' - (3.4)
+ () )
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where v, = V2kBTr/mRb and Rcre is the radius of the PCF core. We extract the

temperature of the cloud by fitting (3.4) to a set of release and recapture data with

A = (Rcore/ro)2 and B = (Vo/ro)2 as the fit parameters, as shown in Fig. 3-7b. The fit

to this data set yields Tr ~ 1.6 mK and ro ~ 2.2 pm. Using the measured temperature

T 1 ImK, cloud length L = 1 cm, wj = (27r)50 kHz, we obtain Pfibe, = 10-7, which is

identical to the original peak phase space density in the MOT, showing that our transfer is

adiabatic. The essence of our current loading implementation is that we rely on capturing

the lower tail of the Maxwell-Boltzmann velocity distribution of the atoms by the fiber-

coupled dipole trap. Currently, the atoms in this tail are brought into the capture radius

of the fiber trap. This is the philosophy behind both the magnetic funnel and the hollow-

beam guide. To increase the loading efficiency, and thereby the number of loaded atoms,

by an order of magnitude or more, one has to take a different approach, i.e. one has to

increase the phase space density of the atomic cloud by additional cooling of the atoms

before or during the transfer into the fiber. In the most extreme case this means loading

a Bose-Einstein condensate into the fiber. This was successfully demonstrated in [78],

but this leads to a severe decrease in the repetition rate of the experiment in addition to

a somewhat increased technical complexity of the apparatus. An alternative approach is

optical cooling of the atomic cloud in the vicinity of the fiber tip once the atomic cloud

has been significantly compressed. In our current setup, the magnetic-funnel wires block

the optical access for implementing this scheme. Since our current loading scheme does

not rely on these wires anymore, they can be removed, allowing the fiber tip to be easily

optically accessible.

3.5 All-optical switching

To demonstrate Electromagnetically Induced Transparency (EIT), we first prepare the

atoms in the F = 1 ground state, and then probe the medium with a linearly polarized

probe tuned to the DI F = 1 -> F' = 1 transition. In the absence of the control beam, the

medium is completely opaque at resonance (Fig. 3-8C, black data points). In contrast,

when a co-propagating control field resonant with the F = 2 -* F' = 1 transition is

added, the atomic ensemble becomes transparent near the probe resonance (Fig. 3-8C,
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Figure 3-8: In-fiber EIT. (A) The atomic level scheme and the corresponding hyperfine
states of 87Rb used in the EIT demonstration. (B) Both probe and control field are
broken into a set of - 100 synchronized pulses sent through the fiber during the off-times
of the dipole trap. (C) Transmission of the probe light through the fiber as a function of
detuning from resonance in the presence of the control field (red data). The black data
show probe transmission without the control field. (D) Individual probe pulse shape and
delay. Here, (nrh) represents the average number of photons detected in a 30 ns time bin.
The reference pulse (black) is obtained without the presence of atoms inside the fiber.
The red pulse is delayed due to the group velocity reduction in the atomic medium under
EIT conditions. (E) Observed transmission of the probe pulses on resonance as a function
of average number of photons in the 1 ys control field pulse.

red data points). Figure 3-8D shows the individual pulse shape and its transmission and

delay due to reduced group velocity vg inside the atomic medium. For a probe pulse of

half-width t, ~ 150 ns we observe a group delay td approaching 100 ns, corresponding to

reduction of group velocity to vg 3km/s. Finally, Fig. 3-8E shows the resonant probe

transmission as a function of the average number of photons contained in each control

field pulse. Due to the tight confinement of light provided by the PCF, control pulses

containing - 104 photons are sufficient to achieve almost complete transparency of an

otherwise opaque system.

An efficient nonlinear optical switch can be realized by adding to the EIT A-system

a switch field coupling the state 12) to an excited state |4) (Fig. 3-9A), as proposed by
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Harris and Yamamoto [53] (see Chapter 2). In this scheme, the switching photons interact

with atomic spins within the slow dark-state polariton, causing a simultaneous absorption

of a probe and a switch photon [83, 56, 84].

In our experiment, an additional switching field resonant with the F = 2 -+ F' = 3

transition of the D2 line of rubidium 7 (Fig. 3-9A, B) controls the transmission through

the EIT medium. As shown in Figure 3-9C, in the absence of the switching field (red

data), we observe high transmission of the probe beam on resonance due to EIT. When

the switch field is turned on, this transmission is reduced. The strength of the reduction

depends on the switch field intensity, which, for a fixed switch pulse length, is determined

by the number of photons contained in the switch pulse (Fig. 3-9D). Experimentally,

we observe best switching results for switch pulses of length t, ~ t, + td. We find a 50%

reduction of the initial transmission for a total number of - 700 switch photons per pulse.

Figure 3-9E presents the truth table of our switch. In the case of no probe pulse (0/0

and 0/1 settings of the switch) only background noise from the control field is detected,

which is orders of magnitude smaller than the single photon per probe pulse.

We now turn to the detailed analysis of the nonlinear behavior of our atomic medium.

In the case when the resonant control and switching pulses are longer than the weak probe

pulse, the effect of the atomic medium on such probe pulses with carrier frequency cp
is given by Eout(t) = 1 f dw £i((w) ew e-w, where 8in(w) is the Fourier transform of

the slowly varying envelope Ein(t) of the probe pulse. The frequency dependent atomic

nonlinear susceptibility 1(w) is given by [40, 53]

OD 713 (QS|I 2 
- 4612624)

2 624 (4612613 - gc12) - 613 IQS12

Here, l2 c = are the Rabi frequencies of the switch and control fields, with ps,c

being the respective dipole matrix elements. The complex detunings 6ij are defined as

6ij = 6p,+zyj, with yij being the dephasing rates between levels i, j, while 6, = p+W-Wi3,

where w13 is the frequency of the 1) -> 13) transition. The number of input and output

photons is given by Nin,ou = f dt IEin,out (t) 12. In what follows, we consider input pulses
t2

with Gaussian envelope Ein (t) ~-e 2t , in which case the transmission through our atomic
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Figure 3-9: All-optical switching. (A) The atomic level scheme with corresponding
hyperfine states of rubidium8 7 used in the experiment. (B) Probe, control and switch
fields are broken into a set of ~ 100 synchronized pulses sent through the fiber during
the off-times of the dipole trap. (C) Probe transmission through the fiber without (red)
and with (blue) the switch field present. Solid lines are fits of Eq. 3.6. (D) Observed
transmission versus average number of switch photons per pulse. The solid grey line is
the prediction based on equation Eq. 3.6. The transmission is normalized to the EIT
transmission in the absence of the switch photons. (E) Truth table of the switch, showing
the detected photons in the output port of the switch system as a function of the presence
of the probe and switch field pulses. Data are presented for probe pulses containing on
average ~ 2 photons and with - 1/e attenuation of transmission in the presence of the
switch photons.
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medium is

T(Lp, OD) = N _ jIdw e- P e~Im . (3.6)

By fitting expression (3.6) to the absorption profiles shown in figures 3-8C and 3-9C, we

extract the control and switch Rabi frequencies, optical depth and ground state deco-

herence rate. We next use these parameters to compare our observed EIT and coherent

switch data to the theoretical prediction. The solid line in Fig. 3-8D shows the calculated

EIT transmission as a function of control pulse photons, while the solid line in Fig. 3-9D

shows the on-resonance attenuation of the probe pulse as a function of the number of

switch photons. In both cases, we find excellent agreement between our experimental

data and the theoretical model. However, for the relevant case of a resonant probe field,

the transmission of the probe pulse can be approximated by

exp N (!) -XtPid

T = P 7 (3.7)

Here, N, is the number of switch photons, we assumed that the Rabi frequency of the

control field is much larger than that of the switching field, the decay rate of state 13) is

approximately the same as of state |4), and we used td = L/vg ~ Y, with L being the

length of the medium.

For the investigated case of a relatively weak probe transition and resulting OD ~ 3, the

delay time is small (td~ tp) and the probe pulse is never fully stored inside the medium.

If the OD is increased (either by improving the atom loading efficiency or using a stronger

probe transition), td > tp and the whole probe pulse is contained inside the medium as a

dark state polariton in a mostly atomic form. In this case, it follows from equation (3.7)

that N, ~ -: switch photons attenuate the probe pulse by a factor of 1/e.

Improvements to the switching efficiency can be obtained by increasing the effective

interaction time between the switch and probe photons. Since the switching mechanism

is based on a simultaneous absorption of a switch and a probe photon, the electric field

envelopes of switch pulse and of the probe pulse have to overlap inside the atomic medium.

To maintain this overlap despite the large mismatch between the propagation velocities

of the two pulses, the switching pulse has to stay on during the whole time td the probe
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Figure 3-10: Photon counter. (A) Photons are coherently stored in an atomic ensemble
as dark state polaritons and each photon results in a single collective excitation. (B)
The ensemble is then probed with a detection laser on a cycling transition, which allows
scattering of multiple photons by a single excitation. (C) When the atomic ensemble is
confined inside a holow-core PCF, the scattered photons are collected and guided by the
hollow fiber and detected with a photon counter. Alternatively, the presence of collective
excitations can be detected by measuring the transmission of the fiber.

pulse is propagating in the medium. This in turn leads to an inefficient performance of

the switch, as most of the area of the switching pulse will end up not overlapping with the

probe pulse. Consequently, most of the switch photons needed to create a long switching

pulse of required field intensity will go to waste. One way to counteract this inefficiency is

to match the group velocities of the probe and switching pulses during their propagation

through the atomic ensemble [58] (which increases the efficiency by a factor NO)D per

switch photon). Alternatively, the efficiency of this switching scheme can potentially be

further improved by using stationary-pulse techniques [85]. In this case, a standing wave

control field from two counter-propagating beams forms an EIT Bragg grating in which the

probe pulse can be completely stopped with non-vanishing photonic component. In that

case, the probability of interaction between two single photons scales linearly with OD
[60]. Experimental progress towards the implementation of these enhanced nonlinearities

in our hollow-core fiber experiment are presented in Chapter 4.
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3.6 Single photon detection

In addition to all-optical switching, our system can be used to implement an efficient

photon counting scheme proposed in Ref. [86] and [87]. This scheme combines photon

storage (Fig. 3-10A )[88, 89] with spin-flipped atom interrogation via a cycling tran-

sition as illustrated in Fig.3-10B. Practical limitations in realistic atomic systems arise

from experimental imperfections that can transfer the atom into state 11) with non-zero

probability during the interrogation stage. This restricts the number of photons that

can be scattered from the stored excitation, which in turn requires the scattered light to

be collected with certain minimum efficiency. Implementing the photon-counting scheme

with an atomic ensemble confined inside a hollow-core fiber could potentially provide the

necessary efficiency boost due to collection and guiding of the scattered photons by the

fiber (Fig. 3-10C). A necessary step on such implementation is the detection of single

atoms inside the hollow-core fiber as this would indicate the capability of the system to

detect and resolve single photons stored in atomic ensembles. Here we present initial

experimental results of our work in this area.

When detecting small number of atoms inside the hollow fiber, the number of photons

detected by the photon counter in Fig. 3-10 is given by

Ndet = NigMcyia, (3.8)

where Neig is the number of atoms inside fiber, Mcy is the average number of photons that

can be scattered by a single atom before the atom is lost by a transfer to state 11) or by

being heated out of the trap, and a the overall detection efficiency of the scattered photons.

This relation also works for the case of photon counting with Neig being the number of

photons stored in the atomic ensemble. a is the product of our atom-fiber cooperativity

and of the detection efficiency for photons in the guided mode of the fiber. The atom-

fiber cooperativity for an atom located at the center of the fiber (ie the probability for

the atom to absorb a single photon in the mode of the fiber) is (3.3) 1.8% (we use linear-

polarized light on the cycling 15S 1/2, F = 2) -- 5P 3 / 2 , F = 3) transition, because of the

polarization properties of the PCF). From the optical theorem, it is equivalent to the

probability for an atom inside the fiber to scatter a photon in one of the directions of
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the guided mode of the fiber [90]. We measure a cooperativity of 0.38% by comparing

the transmission and back-scattering of resonant light out of the PCF for ensembles of ~

100 atoms. This value is in excellent agreement with the one measured using incoherent

population transfer. Although this number is compatible with a gaussian distribution

with temperature 1.6mK, more detailed probing of the resonant transitions inside the

dipole trap point towards the fact that a significant fraction of the atoms seem to have a

radially elliptical trajectory and do not contribute highly to the atom-fiber cooperativity

(Fig. 3-12A). This agrees with classical single-particle trajectories for atoms rolling down

a bottleneck-type potential created by the dipole trap at the entrance of the fiber and

starting off-center with some initial azimuthal velocity. Densities in the fiber are too low

for the atomic ensemble to rethermalize. Combining the atom-fiber cooperativity with

the quantum efficiency of our photon counters and coupling losses, our current setup is

limited to a ~ 10'- .

The total number of photons Mcyc which an atom can scatter is limited by the off-

resonant scattering to another state, especially inside the PCF where the clean circular

polarization required for the 15S1/ 2 , F = 2, mF = 2) -* 15P 3/ 2 , F = 3, mF = 3) transition

is not achievable because of birefringence and multimode effects. For the purpose of

atoms counting, the loss of atoms to the 15S,/ 2 , F = 1) state can be counteracted by

periodic optical pumping. Another limiting factor to Mcyc is the lifetime of the atoms

in the modulated dipole trap. The probing occurs during the off times of a modulated

dipole trap as it is not possible to filter out dipole trap photons well enough to detect

the low light level signal emanating from a few atoms. The lifetime in the modulated

dipole trap is reduced to 4 ms at 1 MHz modulation rate due to parametric heating.

Other heating mechanisms contribute to reducing the lifetime. If the atoms are probed

uni-directionally in the fiber, the photon recoil accelerates the atoms, with two important

consequences: the probe light is Doppler-shifted out of resonance, and the atoms rapidly

escape the trap. We attribute the second effect to the mixing of the longitudinal and

radial external degrees of freedom due to corrugations in the confining potential created

by interference with the surface modes propagating at the core-cladding interface [91].

A clear signature of the longitudinal acceleration is the Doppler shift of the atoms and

the effect can be counterbalanced by alternating probing phases with in-fiber longitudinal

68



A
0.2* signal from

0.15-

0 20 40 60
fluorescence photons

fluorescence
02

02 -

Ols <Ndet>=3

0 10 20 I 40 50 40
070

0.0

002

80 W. i~.

A004

0002

0 10 20 IL 40 50 60
photon counts

Btransmission

004 OD=0

A00
2
0.

0 IL 70 106 140 175

OD<0.05
B N<10

§002 Ni

0 3 70 1I5 140 175

OD~0.15

O IL 70 1IL 140 175

004
40a OD~0.3

2 0.012~

0 L3 70 105 140 175

photon counts [10 31

Figure 3-11: Few-atom detection. (A) Effects of the photon shot noise on the atom

number resolution for aMeyl = 10. (B) Collected fluorescence and measured transmission

from fiber-confined atomic ensembles of various optical depths. For the probed transition,

~ 200 atoms result in OD ~ 1. As little as 30 atoms are clearly detected by fluorescence

and transmission. For smaller ensembles, the average fluorescence signal is not significant

enough with respect to the variance of the noise.

red-detuned molasses. Each scattering event also contributes one photon-recoil energy

to the thermal energy of the atoms, due to the randomness of the emission process.

The molasses can compensate the heating in the longitudinal direction. In the radial

directions, the trap depth of - 10 mK corresponds to - 105 times the thermal energy

gained per scattering event. In the absence of any other heating mechanism and using a

resonant probe at saturation intensity, Mcy is restricted by the lifetime of the atoms in

the modulated dipole trap to ~ 104.

The atom number (and eventually photon number) resolution in this system is limited

by the shot noise of detected photons, and we get from equation (3.8) that the uncertainty

in measured photon number would be

2 N . 2
ANsi - det - *2

sig acydi aMeyc

Figure 3-11,A plots the probabilities of detecting a particular number of photons for
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various number of atoms present in the fiber. For the parameters of our system, we see

that the resolution of atom number becomes more difficult as the atom number increases

over just a few.

Fig. 3-11,B shows our initial experimental results. Here, we observed the fluorescence

(photon counter 1 in Fig. 3-10,C) and transmission (photon counter 2 in Fig. 3-10,C)

of atoms loaded into the fiber and probed on the cycling transition. The data is com-

pared with the signal obtained from an empty fiber. We were able to detect as few as

~ 10 atoms using the scattered light, when the atoms could not be observed in the trans-

mission signal anymore. However, atoms disappear from the dipole trap after scattering

only - 350 photons/atom. This value is independent of density, excluding light assisted

collisions. It is also independent of trap depth, which excludes the simple heating meach-

anisms described above. We attribute this effect to the non-pefectly linear polarization

of the dipole trap, especially in the presence of surface modes. For a perfectly circular

polarization, the dipole trap acts as a fictitious magnetic field and two successive Zeeman

sub-levels are shifted (for 15S 1/ 2, F = 1)) by - 40MHz for our parameters. At each

turn on of the dipole trap, the probe has reshuffled the population between the Zeeman

sub-levels. These energy fluctuations increase the thermal energy of the atoms by the

Zeeman splitting at each cycle of the dipole trap. A few percent of circularly polarized

light is enough to account for the atoms escaping the trap in the absence of radial cooling

(the heating in the longitudinal direction is reduced by the optical molasses). Fig. 3-12,B

describes a way to cool the atoms without radial access by adding a weak blue-detuned

(a few GHz to the 15S1/ 2 , F = 2) -+ 15P/ 2, F = 1) transition) and a weak repumper

beam close to the free space resonance. For each depicted cycle, the atoms cool by an

energy corresponding to the peak energy difference between the Stark-shifted hyperfine

states. Fig. 3-12,C displays preliminary results of this cooling method inside the PCF.

After a few ms of cooling, the absorption in the dipole trap indicates that the atoms have

radially cooled to the bottom of the trap. Some losses occur during the process and we

are currently working on improving this effect.

While the system in its current form is not suitable for photon number detection,

its weak spots can be fixed in the future. In particular, improvement of the atom-fiber

cooperativity by an order of magnitude would allow robust photon number resolution.
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This could be achieved by in part by additional cooling and increased confinement of

the atoms inside the fiber, but most directly by using a hollow waveguide with smaller

diameter of the guided mode, such as the one demonstrated in Ref. [92].

With the fiber acting as a guide for both photons and atoms, the photons can inter-

act with an optically dense atomic ensemble without being limited by diffraction. This

makes the system an excellent candidate for nonlinear optics at very low light levels

[93], while the large optical depth achievable in this system makes it ideally suited for

the implementation of schemes for enhancing optical nonlinearities and creating effective

photon-photon interactions [60, 94, 29, 95, 96]. Finally, while the experiments discussed

here were performed in a vacuum chamber containing a piece of hollow-core PCF, recent

developments in design and fabrication of integrated hollow optical waveguides [97, 98]

open the possibilities for developing this system into a scalable on-chip architecture.
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Figure 3-12: In-fiber cooling. (A.1) Probe absorption in the continuous dipole trap
(blue dots). The data shows a stronger ressemblance to the expected curves for a ring-
like distribution (red, A.3) than for a thermalized cloud (green, A.2). (B) In-fiber cooling
can be implemented by adding a blue detuned beam to our dipole trap. The AC Stark shift
along the radial axis of the dipole trap is plotted for the different Zeeman sub-levels of the
15S 1/2, F = 1)(continuous, blue), |5S1 /2, F = 2)(dashed, green) and 15P1/ 2, F = 2) (dash-
point, black) states in the presence of a 25 pW beam, blue-detuned by 8 GHz from the
15S 1 /2 , F = 1) -+ |5P1 / 2, F = 2) transition. At the center of the trap, the blue-detuned
light preferentially scatters the atoms out of IF = 1). When the atoms spontaneously
decay back to |F = 2), their energy is reduced by the difference in Stark-shift between
the two hyperfine ground states. A low-power repumper recycles the atoms back into
|F = 1) away from the center of the trap, at a position where the level-shift difference
is lesser. (C) Probe absorption in the dipole trap with (black,continuous) and without
(red, dashed) - 1 ms of the cooling scheme described in (B). In the presence of cooling,
the blue-shifted absorption is due to the atoms being radially cooled to the bottom of the
trap, although we simultaneously observe atoms loss out of the trap.
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Chapter 4

Beyond the cooperativity limit for

nonlinear optics with cold atoms

inside hollow core fibers

4.1 Double Slow Light

As described in Chapter 2, EIT is a powerful technique to obtain nonlinear effects domi-

nating the linear absorption and phase-shift. In its most simple implementation [40, 53], it

is nevertheless limited by the single-photon single-atom cooperativity and efficient nonlin-

earities at very low light level require transverse confinement on the order of a wavelength

over an extended medium of large OD. It was proposed in [58] that significant enhance-

ment of the nonlinearities can be achieved if the group velocity of the switch pulse is

matched to that of the slowly propagating probe pulse. A simple way to understand this

enhancement is to consider the propagation of a bandwidth limited pulse of duration mr
undergoing EIT in the presence of a (low power) switch beam in a configuration described

by Fig. 4-2,a. In the absence of switch beam, the probe pulse group velocity vg is strongly

reduced. Provided that the spectral profile of the pulse fits inside the EIT bandwidth,

the width of the pulse envelope is compressed by a factor Vg/c and the peak electric field

amplitude is conserved in the absence of ground state decoherence (see Appendix A). This
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compression of the pulse is explained by the slowing down of the front of the pulse while

the tail of the pulse still moves at group velocity outside the medium. The missing energy

of the pulse is coherently stored in the control field and the spin-wave. As the probe pulse

reaches the end of the medium, it expands back to its original shape. For a high OD, the

group delay rd can be larger than the minimum length of a bandwidth-limited pulse Tr:

Td = OD= ODr (4.1)
T EIT

In the implementation of [53] described in Chapter 3, the group velocity of the switch

pulse is the vacuum speed of light. As a consequence, the probe pulse fully compressed

in the medium only experiences the amplitude of the electric field of the switch pulse for

a duration mr after wich the pulses do not overlap anymore. In contrast, if the switch

pulse also propagates under EIT condition with matched group velocity, simultaneous

pulses will overlap throughout the medium for a duration rd ~ /ODTp. Because the

peak value of the switch electric field is not attenuated, the effect of the nonlinearities will

be increased by a factor D0-D. Alternatively, a long switch pulse of width rd covering

the delay time of the probe pulse in the medium will have the same effect as a slowed

switch pulse of extent rp with same peak intensity, although the latter contains /D

times less photons.

For continuous fields, the enhancement of the photon-photon interaction probability by

OD can be understood as a multiplication of the chances for photons to pass each other

as they travel in the medium. In comparison, for a non-slowed switch, switch photons

are never absorbed by the medium and pass the target probe polariton once, giving a

photon-photon interaction limited by the single atom-single photon cooperativity, i.e. the

ratio between the cross section of the corresponding atomic transition or, and the area of

the switch beam A.

For slow switch photons, the interaction probability O vZDua/A is greatly enhanced

for systems combining large optical depth and strong converse confinement over the extent

of the medium, such as cold atomic clouds inside hollow core fiber. For our experimental

setup, the cooperativity/ < 0.005 will only enable nonlinear optics at the quantum level

for extremely large optical depths (OD > 40000) but the intermediate optical depth can

in principle be used to improve on our classical switching results presented in Chapter 3.
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Figure 4-1: Nonlinearities enhancement by double slow light. a, Probe trans-
mission in the absence of switch field (red dashed line), for a switch field with speed of
light group velocity (dot-dashed blue line) and for a matched group velocity (black line)
achieved by two independent EIT schemes for the probe and switch fields with equal
optical depth OD. The switch field peak Rabi frequency is 1 MHz. At large OD, the
probe pulse is entirely compressed in the medium and the switching efficiency is limited
by the single photon-single atom cooperativity for a non-slowed switch. In contrast, for
a matched group velocity of the switch field, the nonlinearities are enhanced by the large
OD. The lines are the solution to the Maxwell-Bloch equations in the absence of decoher-
ence. For each value of OD, the control frequency is adjusted to obtain a transmission in
the absence of switch field of 0.9 for the probe Gaussian pulse with a standard deviation
of 100 ns (setting the bandwidth of the experiment). b, Transmission of the probe pulse
for various values of the probe optical depth OD 2 as a function of the ration between
the switch optical depth OD 1 and OD 2, for two different values of the transmission in
absence of switch (0.9 for the red curves, 0.5 for the purple curves). At large OD, the
enhancement of the nonlinear interactions is maximized around OD, = OD2. For lower
values of the control field, giving larger group delay and lower transmission, the relative
switching effect is enhanced by the longer interaction time.

The scaling with V07D of the enhancement of the nonlinearities is only valid in the

limit where the pulses are entirely stored in the medium. For resonant control fields, the

EIT peak defines an approximately Gaussian transparency window for the probe intensity

T(Ap) = Exp(-A /2B 2 ) (in the absence of ground state decoherence) where A/ is the

probe detuning, B = KEIT/v809D is the bandwidth of the system and "YEIT/ = Q2/]p the

EIT linewidth set by the control field Rabi frequency Q, and the lifetime of the excited
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state F. The delay Td = OD/YEIT will be larger than a bandwidth limited pulse for

OD > 10 as confirmed numerically and experimentally.

We numerically solve the time-dependent Bloch equation and propagations equation in

the SVEA using a homogeneous medium and in the absence of dephasing rate between the

ground states (other than the broadening introduced the time dependance of the pulses).

Using simultaneously incoming Gaussian field envelopes with a standard deviation of 100

ns for the probe and switch pulses (corresponding to a two-photon broadening on the

order of the observed dephasing rate -y -1MHz), and a peak switch Rabi frequency of 1

MHz, we calculate the energy transmission of the pulses. As displayed in Fig. 4-1, in the

limit of low OD, the pulse does not fit entirely inside the medium, and the effect of the

group velocity reduction of the switch field is not significant. As the OD increases, the

effect of the non-slowed switch saturates as it reaches the cooperativity limit. In contrast,

the nonlinearities are increased for OD > 10 by the matched optical depths for the probe

and switch EIT schemes (see also Fig. 4-2). As the OD increases, the transmission of

the pulse is decreased by the narrowing bandwidth. This effect is compensated for by

increasing the control field to allow direct comparison of the nonlinearities enhancement

at fixed transmission in the absence of switch field. The result of the simulations presented

in Fig. 4-1 neglect decoherence effect, which are expected to reduce the nonlinearities

enhancement. The existence of a dephasing rate -y between the ground states sets a

lower limit to the EIT linewidth and prevents arbitrarily long delays in the medium. The

dephasing rate also limits the nonlinearities by reducing the ratio Td / T " I~ X' |/x/ to

(to first order in Y/T, -r/7yEIT):

Td OD 1 (42
-- = -q (4.2)

Tp 8 2k17  EIT

The original proposal for slow interacting pulses [58] resorts to two different species

of atoms to simultaneously implement EIT on the probe and switch fields. Both species

need to be simultaneously cooled and have a resonant transition in common. It is unclear

which atomic elements would fulfill these criteria. Here we demonstrate a scheme to

implement double slow light in a single atomic species, shown in Fig. 4-2. To the best

of our knowledge, this is the only possible level scheme implementing [58] on the D1-

line of 87Rb. This scheme relies on balancing the atomic population between the (F =
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Figure 4-2: Double EIT scheme. a, Level scheme for the implementation of the Harris-

Yamamoto all-optical switch[53] on the 8 7Rb Di-line (including Clebsch-Gordan coeffi-

cients and schematic Zeeman shift). b, Harris-Yamamoto configuration with reduced

switch group velocity. The balance of optical depth on the switch and probe transitions

is tuned by optical pumping into the 1g2) = IF = 2 , mF = 2) and Igi) = IF = 1, mF = 1)

levels. In particular, the nonlinear enhancement is measured by comparison of the cases

OD 2 = OD 1 = OD and OD 2 =OD, OD 1 = 0.

1, mF = 1), and (F = 2, mF = 2) magnetic sub-levels of the ground state 5S1/ 2 of 8 7Rb

by optical pumping. The probe, respectively switch, field is ---polarized and couples

(F 2 , mF = 2), respectively (F = 1, mF' = 1), to the (F' = 1, mF' = 1), respectively

(F' = 1, mF' = 0), magnetic level of the 5P/ 2 state. a*-polarized light on the F=1 to

F'=1 transition acts as a control field for both the probe and switch light, with equal

Clebsch-Gordan coefficients. The interaction is mediated by the decoherence induced on

the (F = 1, mF = 0) level of the probe EIT scheme due its resonant coupling by the

switch field to (F' = 1, mF' = 1). We are here using the Di-line of 8 7Rb (J=1/2) because

the corresponding wavelength of 795nm is further away from the edge of the hollow core

fiber bandgap, resulting in better defined polarization of the light in the fiber than on the

D2-line for circularly polarized light. The birefringence of the fiber as well as multimode

propagation with different polarizations constitute a strong technical limitation. The

polarization optics are set to optimize the circular polarization at the top entrance of the

fiber, close to which the atoms are mainly located during the experimental probing time.

To maintain the optical pumping, it is necessary to impose a magnetic field along

the quantization axis (which is chosen along the propagation direction in the fiber), to
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avoid mixing by stray magnetic fields orthogonal to the quantization axis. To maximize

the optical switching at low light power, we tune the switch field to resonance with the

magnetically shifted atomic transition, and correspondingly adjust the control field and

probe field to satisfy the two-photon resonance (see Fig. 4-2). As a consequence, the probe

and switch EIT operate at small (compared to the linewidth) one-photon detuning, which

has no consequence in the absence of strong decoherence. Finally, by reducing the number

of atoms loaded in the fiber and fully pumping them to the (F = 2, mF = 2) level, we can

directly measure the enhancement of the nonlinearities with respect to a switch field with

speed of light group velocity. Because of the difference in Clebsch-Gordan coefficients, the

group velocity are matched for a strongly imbalanced distribution of atoms corresponding

to OD 2 = OD 1 = OD/7, which puts high balanced optical depths out of reach for our

current loading mechanism.

As described in Chapter 3, the atoms are free-falling inside the hollow core of the pho-

tonic crystal fiber, and are initially loaded using a blue detuned hollow guide outside the

fiber and a red-detuned dipole trap coupled into the fiber. At the time of this experiment,

the maximal optical depth achievable with a cycle rate of 1 s was OD = 50, corresponding

to an optical depth of 25 on the probe transition. In general, we observed over the years

a slow decay of the loading efficiency into the fiber. Coating of the fiber tip and inner

walls by "7Rb atoms which are desorbed and limit the lifetime in the fiber possibly explain

this decay [99], as well as a reduction of the getters flux. After the initial loading period,

the atoms are optically pumped into Igi) = IF = 1, mF = 1) and 192) = IF = 2, mF = 2)

by a combination of laser fields with a+ polarization on the F = 1 -> F' = 1 and

F = 2 -- F' = 2 transitions of the DI line. Their intensity ratio and polarization pu-

rity determines the balance between the two populations. In particular, larger scattering

rates for the F = 2 -* F' = 2 transition favors the population of Igi) as the remaining

a- component of the pump light transfers atoms out of 192). The exact ratio between

the pumping fields is fine-tuned by directly matching the group delays for the probe (Td,p)

and switch (rd,,) fields. This procedure also corrects for the change in group velocity of

the probe pulse induced by the switch field. To measure the enhancement of the nonlin-

earities, we compare the case Td,p = Td,, = Td to the case rd,p = Td, Td, = 0. For the latter,

all the atoms are pumped into 192) by increasing the intensity of the F = 1 -> F' = 1
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Figure 4-3: Setup for double slow light experiments.87 Rb atoms are loaded from a
MOT into the core of the HCF using a hollow blue detuned guide outside the fiber and a
red-detuned 802nm dipole trap inside the fiber. The probe and switch pulses are counter-
propagating with the control field to minimized the amount of control field light on the
single photon detectors. Three sets of polarization optics comprising one half-waveplate
and one-quarter waveplate are used to independently set the polarizations of the probe
and switch fields, the pump and control fields, and the dipole trap. The polarization for
the probe and switch fields are optimized by taking transmission spectra in large bias
magnetic fields along the z-axis. The control and pump fields are optimized using EIT
spectra. In both cases, the settings of the waveplates corresponds to circularly polarized
light at the top of the fiber, where most atoms are likely located during our probing
sequence. The observed polarization rotation, change in ellipticity and loss of degree
of polarization over the length of the piece of fiber severely limit the quality and the
robustness of the optical pumping. The last set of waveplates imposes the polarization
of the dipole trap in the fiber and the amount of probe and switch signal transmitted
to the single-photon counter after the polarizing beam splitter (PBS) merging the dipole
trap. For our fiber, the setting of the waveplates corresponding to the best probe signal
transmission does not correspond to the optimal (linear) dipole trap polarization for the
atoms loading into the fiber. Finally, the probe and switch signal are dected by single-
photon detectors. The (stronger) switch signal is filtered out from the probe signal by two
consecutive etalons. The transmission of the switch pulses is simultaneously monitored
by sampling a small (~ 10%) amount of the signal and filtering out the probe signal with
an etalon.

pumping beam and decreasing the intensity of the F = 2 -> F' = 2 pumping beam.

Finally, the loading time of the MOT can be used to adjust the total number of atoms
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inside the fiber.

We estimate that ~ 80% of the atoms are initially pumped into the states Ig1) and

1g2). This fraction is lower than what is typically achievable in free space and is probably

due to the observed change in polarization of the pumping light as it travels in the fiber.

For the same reason, the strong control field intensity quickly destroys the quality of the

optical pumping by removing atoms from Igi). To counteract this effect, it is necessary

to alternate probing sequences with longer pumping sequences, which limits the number

of repetitions per cycle time to about 50. We verify that the loss of OD 1 during one pulse

propagation in the medium is on the order of ten percent by measuring the remaining

atomic population in F = 1 after a few successive repetitions. Importantly, the reshuffling

of the atomic population by the control beam has the same signature as an enhancement

of the optical nonlinearities because it reduces the probe transmission by increasing the

atomic population in F = 2. Furthermore, the partial absorption of the switch beam

due to decoherence also contributes to this effect. The lack of robustness of the optical

pumping due to the birefringent and multimode character of the fiber is a severe limitation

for the observation of the few percent nonlinear enhancement expected in our OD regime.

At the output of the fiber, the outgoing switch and probe pulses are separately recorded

using a set of etalons and two single photon counters. For each cycle, reference probe,

switch and control pulses are accurately measured for the empty fiber after the dipole trap

has been turned off for 10 ms in order to eliminate slow drifts of the coupling efficiency

in the hollow core fiber and of the etalons transmission. We also determine the amount

of control and switch field light leaking through the etalon on the probe detector. The

time-resolved control field and switch noise is subsequently substracted from the probe

pulse and the transmission is calculated.

We first demonstrate our ability to match group delays for the probe and switch

pulses using the optical pumping techniques described above. Pulses with Gaussian enve-

lope with a standard deviation of 85 ns are created with acousto-optical modulators. The

pulses are sent simultaneously into the medium and the delays are measured at powers

corresponding to a few photons per pulse. For the low optical depth achievable simulta-

neously on the probe and switch transition OD 2 < 4 and because of typical dephasing

between the ground states - 1 MHz, significant delays with respect to the pulse length are
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Figure 4-4: Probe and switch group delays. Incoming (dot) and outgoing(+) pulses
for the probe and switch field and corresponding Gaussian fits (line). The pulses are
measured for two configurations corresponding to Fig. 4-2.a and Fig. 4-2.b. Enhanced

nonlinearities are expected when the group delays for the probe (red) and switch (black)

pulses are matched by distributing the atoms in 1g2) ans Igi). For direct comparison, we

also measure the nonlinearities when no atoms are left in Igi) and the overall number of

atoms is reduced to obtain an identical probe delay (green). In that case, the outgoing

switch pulse is equal to the incoming one.

not achievable simultaneously with large transmission. Given the scaling of the nonlinear-

ities with the group delay in the medium, the constant control field intensity is chosen to

achieve group delays of 50 ns. It corresponds to a transmission of 0.4 and a broadening of

the pulses by a factor 1.5 (See Fig. 4-4). By fine tuning of the optical pumping intensities

and the MOT loading time, we are able to equalize the group delays of the probe light

and the switch light, as well as the probe light in absence of switch delay, within a few

percent of the pulse duration.

We then measure the relative probe transmission with and without switching pulses for

different switch pulse energies. After the initial pumping, the dipole trap is modulated

with a 1 ps half period. The main experimental sequence consists of 50 repetitions of

alternating probe pulses with and without switch field, separated by optical pumping

pulses. After noise substraction, the switching efficiency plotted in Fig. 4-5 is defined as

the difference between the pulse transmission with and without switch pulse, normalized to

the transmission in the absence of switch field. To compare the photon-photon interaction
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Figure 4-5: Double slow light switching efficiency. Difference in probe transmission
with and without switch pulses, normalized to the transmission in absence of switch field.
Red circles correspond to the case where the group velocities of the probe and switch
pulses are matched. Green diamonds correspond to an identical group delay for the probe
but no group delay for the switch and serves as a reference. The error-bars correspond to
the shot-noise. The number of switch photons is rescaled in the double slow light case to
compensate for the absorption of the switch photons. Measurements are carried out for
OD 2 = 4. In this regime, no visible enhancement of the nonlinearities is expected (see
Fig. 4-1).

enhancement, we compensate for the important absorption for slow switch pulses by

rescaling the number of switch photons per pulse. Assuming an exponential decay of the

intensity over the length of the medium, we rescale the number of switch photons per

pulse to its average value inside the medium (Ni, - N0 ,t)/ln(Ni/Nst) where Nin and

Nst refer to the input and output numbers of switch photons.

In spite of this rescaling, we do not observe any enhancement of the photon-photon

interaction within our measurement noise, as expected from our numerical simulations

carried out for a medium free of decoherence. We nevertheless demonstrate group velocity

matching in the hollow-core fiber and were able to observe nonlinear effects for less than

100 switch photons per pulse after carefully accounting for the noise. This holds some

promise for future experiments, provided that fiber with better polarization properties

are used and higher number of atoms can be loaded in the fiber. It will also be necessary
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to use PCFs with sub-wavelength transverse mode dimensions to reach single-photon

nonlinearities, although the atoms loading might be affected. A three-fold enhancement

of the nonlinearities by double slow light was recently demonstrated in [100] using an

M-level scheme with optical depths of 50-100 in a MOT.

4.2 Stationary Light Pulses in cold atomic media

Zero-velocity dark-state polaritons with non-vanishing photonic compononent in atomic

media, so-called stationary light pulses, have attracted intense attention in recent years

because of the possibility of creating strong optical nonlinearities on the few-photons level.

Here, we present a comprehensive experimental study of stationary light in cold atoms

at large optical depth inside a hollow core photonic crystal fiber. We observe qualitative

changes of the stationary light compared to room-temperature atoms and show that these

effects are due to higher-order coherences relevant for cold atoms. We investigate how the

required features of stationary light for proposed enhancements of optical nonlinearities

can be recovered in cold atoms and demonstrate a distributed Bragg reflector made of a

few thousands atoms.

Controlled localization and storage of photonic pulses allows for novel approaches to

manipulating of light via enhanced nonlinear optical processes. Electromagnetically in-

duced transparency in an ensemble of A-type three-level atoms can be used to reduce the

group velocity of propagating light pulses and to reversibly map propagating light pulses

into stationary spin excitations in atomic media [55]. A special type of stored pulses, so

called stationary light, is of particular interest, because here, the combined atom-photon

excitation inside the medium retains a non-vanishing photonic component, even when it is

completely stopped inside the medium [59, 85]. This enables enhancement of optical non-

linearities by increasing solely the optical density of the medium [60]. The basic idea of

stationary light is to illuminate the atomic medium with two counter-propagating control

fields instead of the single, usually co-propagating control field in normal EIT. Since the

two control fields form a standing wave intensity pattern, this results in a periodic modu-

lation of the EIT conditions inside the atomic medium, similar to the periodic refractive

index change in a distributed Bragg reflector. Stored photons released inside this medium
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can undergo multiple Bragg-reflections and thus remain trapped inside the medium. Con-

ceptually, this is similar to the electric field build-up in an optical cavity, which results in

strong enhancement of the confined light with e.g. atoms inside the resonator. Similarly,

if the stationary light is confined inside a nonlinear medium, the multiple reflections result

in strongly increased interaction times, enhancing effective photon-photon interactions.

This key concept is at the heart of many proposed applications of stationary light inside

nonlinear media, such as Bose-Einstein condensation of stationary light polaritons [94],

crystalization of a strongly interacting one-dimensional photon gas [29], simulating Dirac

dynamics with photons [95], and creating effective magnetic fields for photons [96]. The

existence of stationary light pulses has been demonstrated in room-temperature atomic

vapor cells [85]. Following these experiments, it has been realized that some care must be

taken when transfering the concept of stationary light to ultracold atoms. An essential

assumption of the original theoretical description of stationary light is the secular approx-

imation in which spatial modulations of the ground-state coherence of the A-type atoms

with wave numbers on the order of the optical fields and its harmonics are neglected

[59, 101]. While this is a very good approximation in warm gases, where atomic motion

leads to a fast dephasing of fast spatial oscillations, it fails however for cold gases where

the atoms are almost stationary on the typical timescale of experiments [102, 103, 104].

This has recently been confirmed by experiment [105], where the absence of stationary

light under resonant conditions inside a laser-cooled atomic vapor was demonstrated. In

this section, we study stationary light inside a one-dimensional cold atom medium, taking

advantage of the large optical depth, up to OD = 85. For this we utilize optically trapped

atoms inside the hollow core of a photonic crystal fiber (see Chapter 3). This system

provides the combined advantages of an enhanced single atom-single photon interaction

probability and a large OD, a key requisite to observe strong non-linearities on a few-

photon level [93]. We study the effects of periodically varying EIT control fields inside

the fiber and use our observations to develop a solid theoretical treatment of stationary

light pulses in cold atoms.

We start by loading N ~ 2 x 104 atoms inside our 3 cm long hollow core photonic

crystal fiber with methods described in Chapter 3, where they are guided by a red-

detuned dipole trap. We detect these atoms by sending very weak pulses of probe light
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Figure 4-6: Experimental setup for stationary light pulses inside a hollow-core

fiber. a, Schematics of the experimental setup. After guiding the atoms into a hollow-

core photonic bandgap fiber with a red-detuned dipole trap, the medium is probed in the

presence of co- and counter-propagating control fields, and the transmitted and reflected

probe photons are detected with single photon detectors. b, SEM image of the hollow core

fiber. c, Implementation of the EIT A-scheme on the hyperfine states of the Rubidium

D2-transition. Since the atoms are distributed randomly over the Zeeman-sublevels, the

system is made up of two identical, independent A-schemes that result in exactly the same

EIT transmission. This level-scheme minimizes the strong rotation and change in elliptic-

ity observed for nonlinearly polarized fields. d, Observation of induced transparency at

OD = 45. While the control field is on single-photon resonance for this scan, we observe a

shift of the transmission peak by a few MHz to the blue. This is caused by the AC-Stark

shift induced on level 12) by the control field coupling off-resonantly to 5P3 / 2 hyperfine

states. This effect is included in our analysis.

through the fiber (Figure 4-6,a,b). As defined previously, the important figure of merit

is the optical depth OD = N (ao/A), where N is the number of atoms in the fiber, U- is

the atomic absorption cross section for the probed transition, and A is the area of the

fiber guided mode. Since the atoms experience a strong spatially dependent AC-Stark

shift due to the trapping light, resulting in a shifting and inhomogeneous broadening of

the observed absorption lines, we modulate the dipole trap at a frequency (1 MHz) much

faster than the oscillation frequency of the trap (50 kHz). We perform a series of 100

85

d

cham

coupli
lens

7

6-

5

4 -

.3

.2

. -
40



pulsed experiments on one sample in the off-times of the dipole trap before completely

releasing all the atoms and restarting the loading cycle. When using this technique, we

observe a maximum OD - 180 on the F = 2 - F' = 3 cycling transition.

Despite this very large optical depth, the fiber medium can be made transparent

by EIT. Figure 4-6,c shows the 3-level A-system we use in the experiments described

here. On the chosen probe transition F = 1 -+ F' = 1 of the Rubidium D2 line the

maximum optical depth we can achieve is OD = 85. Our particular choice of parallel

linear polarization for probe and control field is based on the polarization properties of

the hollow-core fiber. Because this fiber type by design is not polarization maintaining,

we observe polarization rotation and change in ellipticity, as well as a partial loss of the

Stokes degree of polarization of the outgoing light, attributed to the multimode character

of the short piece of fiber and the excitation of surface modes propagating with different

polarizations. Nevertheless, transverse pressure on the fiber create two main axes. Light

polarized along these main axes experiences little polarization change when travelling

through the fiber. This is important for our experiments, as we rely on two counter-

propagating control fields interfering to form a standing wave inside the fiber. A typical

EIT transmission scan at OD - 45 is shown in Fig. 4-6,d. Due to the tight confinement

of light inside the hollow core fiber, very low control field power ( 10 nW) is sufficient to

achieve > 80% transmission on two-photon resonance. We observe similar EIT spectra

for co- and counter-propagating control fields (the atoms are sufficiently cold for Doppler-

shifts to be negligible).

To turn this EIT configuration into stationary light inside the fiber, we turn on both

control fields simultaneously, such that they form a standing wave pattern of control field

intensity with spacing A/2 = 390 nm. We then study the response of the medium in the

frequency domain by measuring the transmission and reflection spectra of an incoming

probe beam. We can infer the possibility for stationary light inside the medium from

unique features in the observed spectra. In particular, the key feature pointing towards

the ability to confine light inside the medium is the observation of a strong Bragg-reflection

peak, accompanyied by a bandgap in the transmission spectrum, i. e. a frequency range

over which any transmission through the system is strongly suppressed.

Before turning to experimental results, we briefly review the theory for stationary
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Figure 4-7: Absence of optical bandgap on resonance. Measured transmission (a)
and reflection (b) for resonant control fields (A+=A-=0). The expected reflection peak
vanishes, as predicted by our analytical model (solid curves). 0-th order predictions,
pertaining to room-temperature atomic vapors are plotted for identical parameters (black
dashed lines). The analysis takes into account a 10% power imbalance between the co-and
counter-propagating control fields. All the parameters are within 20% of the values inde-
pendently extracted from EIT fits for free-running control fields. The measured reflection
is rescaled by a factor 1/3.5 (see text).

light, including the effects of a finite detuning between the two control fields and finite

pulse duration. We first decompose the probe field into two slowly varying components

E+ (forward propagating) and E_ (backward propagating) and introduce coarse-grained,

slowly varying collective atomic operators 1', $, e pertaining respectively to the 1) -+ 12),

11) -- 13) and |3) - 12) coherences (see Appendix B). The atom-photon interaction

Hamiltonian in the rotating frame is given by (Eq. B.1):

HI = [ dz g eikpz Z e-ikpz pt ]

- f dz/ i [(Q+ei(kc+Ak+)z-iAt + Qe-i(kc+Ak_)z+iAt) et(z, t)] + h.c.

(4.3)

where g is the single atom-probe field coupling constant, L is the length of the medium,

87



Q+ are the rabi frequencies and A+ = A, ± A the detunings for the forward (+) and

backward (-) propagating control fields (A, is the average detuning between the forward

and backward control fields). In what follows we neglect the terms Ak±z = tA - z/c

because, for the experimentally relevant detunings, they correspond to negligible phase

shifts over the length of the medium. The counter propagating control fields have the

effect of coupling different spatial Fourier components of the atomic polarization, which

allows F+ to be backscattered into E_ through a four photon process. Therefore, it is

convenient to expand the polarization in its Fourier harmonics 73 = Zm f(meim(kcz-At),

$ = Z $(m)e im(kcz-At). The higher order Fourier components of the polarization drive

an electric field at the corresponding frequency, but these fields do not satisfy the phase

matching condition and, as a result, are strongly suppressed. Since we are primarily

interested in the case of weak signal fields corresponding to a few photons, we can expand

p(±l) to first order in S4. We obtain a set of Langevin-Maxwell equations for the atomic

coherences and the probe fields, given, in the Fourier domain and for steady states by

(see Appendix B):

±c~z9 (z, 0) = ic(Ak)±(z, 0) + i -jP (z, TA) (4.4)

0 = - - iA - i (+1 (z, 0) + +$(0) (z, 0) (4.5)

222

+.QS()(z, 0) + 2-(+ ± )

0 = - - imA - i6) P(m)(z, 0) (4.7)

22
+ -Q*P(m+I)(z,0) + -Q*p(m-1)(Z,0)

where gp = v/g is the collective probe coupling, IF is the decay rate of the excited state

and -y is the Raman decoherence rate, AP the probe detuning, 6 the two-photon detuning

and Ak = kp - k, the phase mismatch. After taking the average values for the operators
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(i.e. the classical envelopes of the fields), we can invert Eqs. 4.5-4.7 to find the frequency

dependent susceptibility, which allows us to integrate Eq. 4.4 in z to obtain the reflection,

transmission and absorption through the medium.

We first investigate the simple case of on-resonant control fields of equal power. The

observed transmission and reflection spectra are shown in Fig. 4-7,a and b. Unlike the re-

sults obtained in hot atoms [85], we observe almost no reflection on two-photon resonance

as well as the absence of a transmission band gap. This is equivalent to the observation

of non-stationary pulses inside the medium obtained before in cold vapor experiments

[105], confirming that the simple picture of stationary light does not hold in cold atoms.

This also is apparent in the visible qualitative discrepancy between our measured spec-

tra and the Oth-order calculations (back dashed lines in Fig. 4-7). Agreement between

theory (solid colored lines, for which all the parameters of the model are measured inde-

pendently) and experiment can only be obtained by including higher order coherences,

in which case the theory reproduces the qualitative changes observed in the experiment.

For our experiment, there is a large experimental uncertainty in the normalization of the

observed reflection. We observe a factor - 10 larger magnitude of the reflection peak

depending if the experiment is carried out with an input probe coupled at the top of the

fiber or an input probe coupled at the lower facet of the fiber. We attribute this effect to

a defect or impurity close to the bottom end of the fiber, resulting in a loss factor qF for

the probe fields propagating past it. The atoms are probed when they are near the top

entrance of the fiber. According to this model, upon renormalization by the transmission

in the absence of atoms, the reflection is overestimated by a factor 7F for an input beam

from top and underestimated by a factor F for an input beam from the bottom. As a

consequence, using qF = 12, we rescale all the reflection spectra, taken with a top incom-

ing beam, by a factor 3.5 and notice that it gives reasonable qualitative agreement with

our model.

These findings lead to the question of the existence of stationary light in cold atoms.

One solution to recover stationary light is to use a double-A scheme instead of the simple 3-

level system [106], so that no higher-order coherence terms coupling forward and backward

propagating probe fields can form at all. While this greatly simplifies the theoretical

approach, it may be relatively complicated to implement experimentally. An alternative
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Figure 4-8: Stationary Light Pulses in hot and cold atomic vapors. a, Reflection
and b, transmission for OD = 80, in the absence of decoherence. For room-temperature
atoms, the large displacement of the atoms on the length scale of the imprinted spin-wave
grating (- A) and on the timescale of the EIT process (- Q 2/F) is well described by the
Oth order theory (grey lines), where the higher spatial harmonics of the spin-wave are
neglected. As a result, a large optical bandgap replaces the EIT transmission peak and
is accompanied by a broad reflection peak. In contrast, for cold atoms, it is necessary to
include higher spatial Fourier components of the spin-wave. The inclusion of the faster
oscillating spatial components of the spin-wave significantly reduces bandgap (dotted lines,
see also Fig. 4-7). The hot atoms behavior can be recovered by introducing a detuning
between the control fields, creating a running control-field standing wave (colored sold
lines). In that case, the reflection exhibits a broad reflection peak almost identical to the
one expected for room-temperature atoms, centered on resonance with the co-propagating
control field. The parameters are Q+ = Q- = 20 MHz and A+ = A- = 20 MHz for the
detuned case.

solution that has been proposed are "'two-color"' control fields, i.e. the introduction

of a (small) relative detuning between the two control fields [107, 105]. In this case,

the two fields form a "'moving"' standing wave, i.e. the nodes and anti-nodes of the

control field move along the medium with the beatnote frequency of the two beams.

As visible in equations Eqs. 4.7, 4.6, the detuning creates dephasing at rates Oc mA

between the higher harmonic of the atomic coherence, resulting in a washing out of the

higher order coherence terms. As visible from the theoretical predictions in Fig. 4-8, the

reflection feature obtained by detuning symmetrically the control fields from the resonance

ressembles strongly that of the resonant case, albeit shifted by an amount corresponding
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Figure 4-9: Spectra for a moving-wave control field. Measured transmission (a,b)
and reflection (c,d) for detuned control fields (a,c: A=-A_=-20 MHz; b,d: A+=-
A_=20 MHz). Here, the optical depth is OD=20 and the control fields Rabi frequency ~
30MHz. The transmission spectrum exhibits a complex multi-peak structure arising from
the higher order coherence terms in the spin-wave, accompanied by a reflection peak close
to resonance with the co-propagating control field. We observe good qualitative agreement
between the measured reflection peak, the theoretical prediction including higher order
of the spin-wave and the 0-th order theory (grey dashed lines). We also observe good
qualitative agreement between our theoretical prediction and the transmission spectrum.
The discrepancy between the measured data and our model is likely caused by many
technical imperfections in our hollow-core fiber experiment, such as polarization rotation
and ellipticity of the light, multimode character of the beams and attenuation of the fields
along the fiber.

to the detuning of the forward control beam.

This has been studied at low optical densities in dilute vapor of cold atoms, where

strong damping of the higher order terms was observed for small relative detunings on the

order of the probe transition linewidth (6 MHz) [105]. In our investigation at significantly

larger OD, we find that much larger detunings are required to reproduce the qualitative
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aspects of the Oth-order calculation. In Figure Fig. 4-9 we show transmission and reflection

spectra for the case of OD = 20 and detunings of A, = 0, A = 20 MHz. Only when we

increase the relative detuning to this large value on the order of the control frequency do

we observe a significant reflection peak at two-photon resonance with the forward control

field, accompanied by a frequency range of suppressed transmission. The running lattice

creates dephasing on the order of the wavelength over a timescale - 1/A, effectively

washing out the higher order coherences when this timescale is smaller than the inverse

EIT bandwidth, ~ A/Q2. The effect of the detuning is similar to the atomic motion as

can be seen by the fact that both the full theory (solid color lines) as well as the 0th order

calculation (grey dashed lines) predict this reflection peak. Other features, such as extra

peaks in the transmission spectrum, are qualitatively reproduced only by the full theory,

while the 0th order theory fails to predict them completely. Based on our observations

and the full calculations, the criterium for the required relative detuning between the

control fields to observe stationary light is that it is larger than the control field Rabi

frequencies. This might limit the applicability of this solution in the case of very large

OD (> 1000) and control field Rabi frequencies (> 100 MHz) envisioned in some of the

proposed applications of stationary light [59, 29].

Finally, we explore the possibility to create distributed Bragg gratings by taking ad-

vantage of the multi-level atomic structure. The ground state 12) is off-resonantly coupled

by the standing wave control field to the hyperfine levels F = 2 and 3 (see Fig. 4-6), in-

ducing a periodical level-shift with a periodicity A,/2 given by that of the control lattice.

Here, we neglect the effect of the control field on the other levels due to the large energy

separation of the hyperfine ground states. At large control fields detuning (A, > F), close

to two-photon resonance (6 = 0), the probe samples a periodical medium consisting of

alternating layers with different index of refraction and transmission. Experimentally, the

control fields are blue-detuned from the 12) -- 13) transition and have the same frequency

(A = 0). We denote AL the Stark shift at an anti-node of the control field lattice (which

equals four times the level-shift generated be a single control field, due to constructive

interference between the control fields) and take the effect of the periodic shift into ac-

count by making the substitution 6 -* 6 - %L(1 + cos(2kcz)) in (4.7). The equation for

the spin-wave harmonics becomes:
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j6 + i (m - .L (' (m±2) + ' (m-2)) + 2 Q*P(ra±l) ±+ (ml (4.8)

On top of the average Stark shift AL/2, the grating also induces direct coupling

between the even harmonics of the spin-wave. The theoretical predictions are displayed in

Fig. 4-10,a, where the transmission and reflection spectra are plotted for equal parameters

in the presence and absence of coupling to a fourth excited level responsible for the

periodic phase-shift. The modulation of the level-shift clearly induces a large reflection

peak associated with an opaque optical bandgap. We verify that theses prediction are in

excellent agreement with our theoretical predictions, as displayed in Fig. 4-10,b, where

the reflection was scaled by the same factor TiF= 3.5. In particular we observe a large

reflection peak (> 70%) associated with a large optical bandgap. All the parameters

in the theoretical model (solid lines) are independently measured from EIT fits, showing

excellent qualitative agreement between our model and observations. Note that a running

lattice creates a moving periodic Stark-shift in the case A # 0 and has been included in

the theoretical model displayed Fig. 4-9.

In this case, the system can be seen as a dynamically controllable mirror, made out

of few thousand atoms, which may be useful for creating dynamic cavities [108, 109] or

for all-optical routing of probe pulses [110]. In conclusion, we have presented the first

experimental investigation of stationary light in a cold-atom system with large optical

depth. Comparison to the full theory of stationary light in a A-system sheds new light

on how this phenomenon has to be treated theoretically in the case of cold atoms. This

understanding will be essential for the application of stationary light to the enhancement

of optical nonlinearities [60, 106, 29, 95, 96], which was recently demonstrated in [111].
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Figure 4-10: Atomic Bragg grating. a, Expected transmission (blue) and reflection
(red) for similarly detuned control fields (A+ = A-=32 MHz) of equal power (Q+ = Q_ =
12 MHz), for a A-type 3-level system (dashed) and in the presence of a fourth atomic level
inducing periodical level-shift of the ground state 12) by the standing-wave control field
(see also Fig. A-1,b), at an optical depth OD = 75. The periodical Stark shift induces a
modulation of the index of refraction, and the probe field is strongly reflected from the
Bragg-type medium. b, Measured transmission (blue circles) and reflection (red circles)
for the same parameters, showing a large reflection accompanied by a large extinction of
the transmission over and extended bandgap. The solid lines correspond to our numerical
prediction, for which all the parameters have been extracted from free-running control
field EIT spectra.
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Chapter 5

Properties of Rydberg Atoms

5.1 Atomic structure

Rydberg atoms are named after Johannes Rydberg, who generalized John Balmer's spec-

troscopic observations in hydrogen atoms to propose an empirical scaling law for the

spectral line series of alkali atoms in 1889:

1 = A-__ (5.1)
A (n -6) 2

where n was the ordering of the line in the series, J a constant for a given series and Ao

an empirical constant for all alkali species. In 1913, Niels Bohr quantum theory of the

atom showed that the spectral lines of hydrogen atoms correspond to transitions between

the electronic energy levels given by:

En = -hc (5.2)
n2

with the Rydberg constant:

mee4

Ro- = 1.0973731568525(73) x 107 m- 1  (5.3)
86gh 3c

The approximation of an infinite nucleus mass is corrected by substituting an element

specific Rydberg constant R = Ro (y/me), incorporating the reduced mass = e1N

for the electron (me) and nucleus (MN) masses. Alkali atoms in highly excited states are
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well described by a hydrogenoid model where a single valence electron is interacting with

a positively charged effective nucleus comprising Z protons shielded by Z - 1 neighboring

electrons. The overlap between the electron wavefunction and the nucleus introduces

a small deviation from the point-like hydrogenoid atom, characterized by the quantum

defect Jn,l,j, which depends on the azimuthal quantum number I and the total angular

momentum quantum number J. The energy of the (n, 1, J) level with respect to the

ground state is given by:

R R
AEn,lJ= E- - =E, - (5.4)

(n - *2i~)

where E is the ionization limit. Here we are particularly interested in the low 1 states

which can be optically accessed from the ground state by a one- (1 = 1) or two- photon(l =

0, 2) transition. The quantum defect arises from the penetration of the valence electron

into the finite size atomic core and the resulting modification of its interaction with the

core electrons and the nucleus. The quantum defect decreases with the orbital angular

momentum 1 as 1-5[ 12]. At higher 1, the orbital is becoming more circular and the pen-

etration of the electron in the core and the core polarization are reduced. The electronic

wavefunction then ressembles that of a classical Bohr orbit [113].

A useful list of references for spectroscopic measurements of the quantum defect for

the different alkali atoms is given in [114]. For Rubidium, millimeter-wave spectroscopy

[115], and two-photon spectroscopy [116, 117] show excellent agreement for the extracted

quantum defect. The latter reference also provides the absolute ionization energy by using

a calibrated frequency comb. The results for the level of interests in the framework of

this thesis are summarized in Table 5.1.

Two successive high lying levels have an energy difference 2R/n*3 . For n = 100, this

difference is ~ 7 GHz and the level structure is still easily resolvable with MHz linewidth

lasers commonly used in atomic physics. The fine structure splitting similarly scales as

1/n*3 and is -10 MHz for n = 100.

For Rydberg atoms, the hyperfine structure arising from the interaction of the nucleus

spin with the electron angular momentum is generally negligible. The hyperfine splitting

is measured to be 1.5 MHz [115] for the 30S112 state and scales as n*-3 [114]. As a

consequence, it is expected to be on the order of a few tens of kHz for n = 100, which is
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nSi/2 nPi/2 nP 3/2  nD3/2  nD5 /2

E1(5S1/ 2 , F 1) 33 690.946 44 cm-1
1 010.029 164 6 (27r) THz

R( 87Rb) 109 736.623 243 cm-1
3289.821 194 66 (27r) THz

60 3.131 180 7(8) 2.654 884 9(1) 2.641 673 7(1) 1.348 094 8(11) 1.346 462 2(11)
62 0.178 7(2) 0.290 0(6) 0.295 0(7) -0.605 4(4) -0.594 0(4)

Table 5.1: 87 Rb spectroscopy values for the Rydberg states accessible from the 5S/2
ground state by one- and two-photon transitions. For a given n, 1, J level, the quantum

defect is given by the Rydberg-Ritz expansion: 6o,,j = 6 0 + 2 +.... The energy levels

are given by Eq. 5.4. The quantum defect and ionization energy values are taken from

[1171.

not resolvable with our lasers. The hyperfine quantum numbers (F, mF) cease to be good

quantum numbers in magnetic fields as low as a few mG and we will restrict ourselves for

the Rydberg levels to the fine structure description (n, 1, J, mj) where mj is the projection

of the total electronic angular momentum along the quantization axis.

5.2 Wavefunctions and dipole matrix elements.

The electronic wavefunctions of Rydberg atoms are crucial for the calculation of many

of their properties, such as their lifetime and the dipole-dipole interactions. To a good

approximation, the general scaling properties can be retrieved from the hydrogenic wave-

functions:

?n,,m(r 0, ) = R, (r)Y1
m (, ), (5.5)

separated in an angular dependance described by the spherical harmonics Y'(6, q) and a

radial dependance R,i(r) obeying the Schroedinger equation for a Coulombian interaction

potential: h2 1 d2  h21(1 + 1) 1 e2 1- RE - r + R, 1 (r)= -RnJ(r) (5.6)
2prdr2  2/ r 2  4irEor ' n2

All Rydberg atoms properties stem from the large electron-nucleus separation. Using

the radial probability density of the hydrogen wavefunctions, the average electron-nucleus

separation (r) = f' drR 1,(r)rI is:

(r) = ao(n 2 1(11) (5.7)
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More precise values of the fine structure wavefunctions:

/n,j,mj(r, 6, 0) = R,l,J(r) (1, s; Mi, ms l, s; J, mJ) Y m(0, #) (5.8)

(where (1, s; mi, m,11, s; J, mn) are the Clebsch-Gordan coefficients for the addition of the

orbital angular momentum 1 and electronic spin s = 1/2, with respective quantum num-

bers m, and m, for their projection onto the quantization axis verifying Mi1 + m, = mi)

including effects of the core on the radial wavefunction[118, 119, 120] can be derived

from the knowledge of the quantum defect by application of the quantum defect theory

[121, 119] or by numerical integration of the radial Schroedinger equation (in atomic units)

[118]:

1 [1 d2 +(1 + 1)1
n*2 [, , r dr2  2r 2 IR, 1 ,j(r)

+ [a2 J(J + 1) - + 1) - s(s + 1) + V(r) R,,J(r),

where we included the spin-orbit coupling. It is generally sufficient to consider a modified

potential taking into account the polarizability of the nucleus ao = 9.023 a.u. (for 87Rb):

V(r) = 2 ao (5.10)
r 2r4'

although more complex potentials exist to model the core penetration by the electron

[122].

The dipole matrix elements are related to the radial integral (Rn,i,JlrIRn',l',J') =

f0 drRn,1,J(r)Rn/,'1,/(r)r' by:

(n, 1, J, MJlrqln', i', J', m') =(Rn,i,JgrJRn',1,Ji) VMax(l, l')(l - l')(-1)2J'+l+s+mj

x 2J+ 1/2J'+ I I}
M'1 q -mi J' J S

(5.11)

where the Wigner-3j and -6j coefficients enforce the selection rules 11 - 1 = 1, J - J <
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1, and mj = m' + q and the index q {-1, 0, 1} refers to the polarizations { (e_ -

iey),7 ez, - (e,, + ie0)}.

The integration of the radial matrix elements (Rn,,JjrIRn/,1/,J') generally requires the

knowledge of the Rydberg wavefunctions. Nevertheless, the observable r in the radial

integral strongly weighs the region of the wavefunction located further away from the

nucleus. In this region, the electronic wavefunction is well described by the hydrogen

wavefunctions and the quantum defect and a good approximation in the calculation of

the radial matrix element consists in using solutions to the Coulomb potential over the

region [ri, oc] where r1 ~ ao is the core size.

00( Rn,i,j~r|R,ii,ji) I~ r3 R "f (r )RS, ',,(r )dr (5.12)

The above approximation becomes better at large 1, as the penetration of the core by the

valence electron is reduced due to the circular orbit.

We first turn to the coupling between low-lying states and highly excited states. For

these transitions, in the limit n' > n, 1' the dipole matrix elements scale as [123, 119]:

3

(Rn,l,JlrlRnlry,J') ~ aon'*__ (5.13)

For low excited state, rRn,i,J(r) is only significant in a region smaller than the core

size, and the scaling law 5.13 reflects the amplitude of the Rydberg wavefunction at

r = 0: 14n',,I(0)12 oc n-'. This scaling sets an experimental challenge as it limits the

coupling rate to the Rydberg state and for example the possibility to detect them optically.

In contrast, the dipole coupling between neighboring Rydberg levels (in the microwave

domain) increases rapidly with n as:

(Rn,i,Jjr|Rn',1',J') = 3aon 2g(n* - n'*) (5.14)

where n, = (2 *), and for 1 < n, g(n* - n'*) is a universal function independent of the

species and is numerically evaluated and tabulated in [124]. In particular, 9(0) = 1. The

relation 5.14 stems from the fact that the wavefunction of highly excited states oscillate

approximately independently of 1, and the radial integral differs little from (r) when

n ~ n'. For circular states, the quantum defect becomes negligible and the radial dipole
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matrix element between states in, 1) and states In,1 + 1) is laon2 [125]. This gigantic

coupling with microwave photons is a cornerstone of microwave cavity QED [38].

5.3 Rydberg states lifetime

An atom in Rydberg state in, 1) spontaneously decays to neighboring Rydberg and lower

lying states. The spontaneous decay rate to a particular level In', ') is given by Einstein's

A coefficients, after summation over the degenerate final states and average over the initial

states:

= 4 a Max(l, 1') I(Rn,1,jrjRn',vJ')12  (5.15)
S= C2 21+1

where hw = E,, - E',,, is the energy difference between the involved levels.The natural

lifetime Tn,l is obtained by incoherently summing over all the possible decay channels

allowed by dipole transition rules and satisfying En,j > E',,,,:

I1 = P = F nl-al, (5.16)

For Rydberg states, spontaneous emission rates towards low-lying states are dominated

by the transitions with the highest energy difference, typically to the state 5P for the nS

and nD states of 8 7Rb, which subsequently decay rapidly to the ground state 5S. By

replacing the ionization energy by w in Eq. 5.15, we deduce that these rates are on the

order of 2Cn*-3 The scaling with n originates from the dipole matrix coupling (seeao

Eq. 5.13). Spontaneous emission also happens towards neighbouring Rydberg states with

a rate on the order of 4n*-5. There, the level proximity w oc n*-3 counterbalances theao

large coupling coefficients oc n*2. As a consequence, for low 1 states, the lifetime of the

Rydberg state is dominated by the decay to the low-lying states and scales as n*3 . The

situation differs for circular states (with high azimuthal quantum number 1), as transition

towards low-lying states are forbidden by conservation of the photon angular momentum

Al = +1. These states have an extended lifetimes scaling as n*5 .

Numerical calculations and experimental measurements of the lifetime are well repro-

duced by a simple scaling law [126]:
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T = T'n*. (5.17)

The parameters r' -1-3 ns and r = 3 ± 0.1 measured in [127] for the S,P and D states

of 8 7Rb, are in good agreement with the simple interpretation given above.

5.4 Effect of the blackbody radiation on the lifetime

Due to the large value of the electric dipole matrix between neighboring Rydberg atoms

and the large wavelength of the corresponding transitions, Rydberg states are highly

sensitive to blackbody radiations, which stimulate atomic excitations with resonant energy

hw = E,, - Enl proportionally to the average number of blackbody photons per mode

N, = (ek - 1)-i. The blackbody decay rate of the level n, 1, Fhh is given by [128]:

n1 91NW nl-nl'l' + 3E 'NwFnian'i' (5.18)
E'<E E'>E

In contrast to the spontaneous lifetime, the blackbody radiation induces stimulated

excitation to levels n', 1' with both higher and lower energies. g, = 21+1 is the degeneracy

of the corresponding level. Each term of the sum in Eq. 5.18 is proportional to the product

of the blackbody radiation energy spectral density 3 - 1-i and the square of the

radial matrix dipole element: (R,,IrIRn',',J') 12.

At room temperature, the energy spectral density is peaked at v - 18 THz. For larger

frequencies (corresponding to transitions between high and low-lying states), the black

body stimulated emission decreases rapidly and is rightfully neglected. Blackbody stimu-

lated absorption and emission between Rydberg states benefits from the slowly decaying

tail of the blackbody energy spectral density at low frequencies, oc v2 , in coincidence

with large coupling strengths. The blackbody radiation stimulates transitions either to

neighbouring Rydberg states, to lower intermediate states or to the ionization limit. The

dominant contribution is the stimulated emission between neighboring states [129]. As

a consequence, in the presence of blackbody radiation, the atomic population diffuses

through the neighboring Rydberg states. The blackbody radiation induced lifetime in-

creases for higher states a n*2, due to the n*-6 scaling of the energy spectral density and
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the n*2 scaling of the dipole matrix element. An approximate expression can be derived

for the blackbody radiation induced decay rate [128]:

T 4 3hn*2kBT (5.19)

The blackbody radiation decreases the lifetime T' from the spontaneous lifetime T to:

1 1 1- = -I + -- (5.20)
T T TBB

For 87Rb, lifetimes at room temperature are measured in [127] and are shown to be in

excellent agreement with the model described in Eqs. 5.17,5.19,5.20.

5.5 Stark effect

Due to the large average distance between the valence electron and the core, Rydberg

atoms are easily polarized by a static electric field F. The interaction between the electric

field and the dipole operator p is governed by the interaction Hamiltonian:

V = -7-F (5.21)

The so-called Stark map, describing the eigenstates of the system in arbitrary high

fields, require the knowledge of the dipole matrix elements (n, 1, J, mjIzlIn', ', J', m'j) (for

a constant electric field aligned along z) to diagonalize the interaction matrix in the

in, l, j, mj) basis. The methods for the calculation of the Stark maps are detailed in [118].

For Stark shifts small compared to the level separations, the in, 1, J, mj) states are not

significantly mixed by the electric field and second-order perturbation theory (for non

degenerate states) yields a quadratic Sark shift. The partially mixed levels are, to first

order:

In, 1, J, mJ)F =n, , (n' 1, 'Izln, 1, J, mj) In', 1', J', m') (5.22)
n',i',J',m' -E

The electric field induces a finite permanent average dipole moment:
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( I(r', ', J', m'Izlrn, 1, J, mj)12
( 2'Z) = -apF = -e2F n (5.23)

2n/'1/'j/'M En,1, - Enig

The scalar polarizability ap is dominated by the interaction between the nearest Ry-

dberg levels, which are simultaneously favored the strong dipole coupling (Oc n*2 ) and

decreasing energy difference (oc n*- 3). As a consequence, the scalar polarizability of Ry-

dberg states scales very favorably with the primary quantum number: a oc n*7. The

polarizability of the nSj/ 2 states of 85Rb was measured over the range n = 15 to n = 80

[130] and is indeed dominated by an n*7 dependance at large n :

a = 5.53(13) x 10-nm* 7 + 2.202(28) x 10- 9 n*6 [MHz/(V/cm- 1)2 ] (5.24)

Due to this gigantic polarizability, atoms are very sensitive to stray electric fields and

static charges, and experimental precautions have to be taken in the presence of nearby

insulating surfaces.

5.6 Field ionization

Field ionization is used to selectively ionize atoms in specific Rydberg states and efficienty

detect them using channeltrons. This technique is crucial to many Rydberg atoms ex-

periments [131, 132] as the optical detection of atoms in Rydberg states is impaired by

the weak coupling to the ground states. To a very good approximation, the electric field

values necessary to ionize Rydberg atoms are given by a classical model: the electric field

sufficiently distorts the core potential to lower the resulting potential barrier below the

unperturbed energy of the state, -R/n*2 . Using the Coulombian approximation for the

interaction with the atomic core, the total electronic potential long the z direction

1 e2

V(z) = + eFz (5.25)
47rco Izi

admits a local maximum at z = - /47rcoe/F, lowering the potential barrier to -- 2e3 /2 /F/47reo.

In this classical approximation, where tunneling, Stark shift and level mixing[133] are ne-

glected, the ionization treshhold field for the state n is:
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11
F =-3.2 x 108 [V/cm-] (5.26)

and the predicted values typically fall within 20% of the measured ionization thresholds.

5.7 AC Stark shift and optical trapping

In this section, we are interested in the level-shift induced on Rydberg levels by fields with

wavelengths much shorter than the Rydberg energy separations, typically corresponding

to optical frequencies used for dipole trapping of ground states atoms. The perturbative

level-shift of the state {n, 1, m} induced by an AC electric field of amplitude E, angular

frequency w and polarization eq is, to lowest order:

e2E 2/1/)2
AEn,l= I (nl, m r n',l', m') 2  + (5.27)

where hWn,i,n/,i' =Enj - En,, is relative energy of the levels coupled by dipole coupling

(and can be positive or negative). For low-lying levels, for which the energy differences

correspond to optical frequencies, the level-shift is well detemined by the few transitions

closest to resonance with the electric field angular frequency. For Rydberg atoms, the

situation differs as there are a finite number of off-resonant transitions to lower-lying

states with weak coupling and an infinite number of largely off-resonant (Iwn,i,n',' < w)

transitions to Rydberg states with large coupling elements. In that case, it is possible to

expand the formula above to lowest order in |Ln,1,n,,y /W:

AE - e E (n, 1, m lrqn', 1, in') 12 Wn,1,n',I' (5.28)

In many cold atoms experiments, atoms are trapped at the maximum intensity region

of high power fields red-detuned from the ground state to first excited transition. Eq. 5.28

assumes that couplings between the Rydberg level n, 1 and a finite number of low-lying

states n', 1' with energy Un,1,n ~'- w have a negligible contribution to the sum due to the
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weak scaling of the dipole matrix element. This approximation does not hold for strong

near-resonant fields coupling the Rydberg levels to the low-lying states [134, 135]. The

terms of the sum in Eq. 5.28 are proportional to the oscillator strength:

fn,=,n' = - 2 me I (n, 1, mlrq In', 1', rm') 12 wn,l,n',l' (5.29)

which obeys the Thomas-Reiche-Kuhn rule: Enj fn,1,n/,1' = 1. As a consequence,

e2E 2

AEn,l = eE 2  (5.30)
4mew

The energy shift correspond to the so-called ponderomotive energy of a free electron

vibrating in the electromagnetic field: E 2 /2w 2 is the average value of the vector potential

A and the level-shift is the average value of the quadratic term in the free-particle Hamil-

tonian 1 (p± eA) 2 (the oscillating terms averaging out to 0 over time). Numerically, a

1064 nm field with an intensity of 100 kW/cm2 will induce a level shift of 2.5 MHz (of

the same order of magnitude as the ground state shift for 87Rb).

In a far-off resonant trap, all Rydberg levels are shifted by the same amount and the

level-shift is positive, independently of the wavelength of the field. As a consequence,

Rydberg atoms can be trapped at a minimum of the light field intensity, for example in

optical lattices [136, 137]. Nevertheless, ground states atoms are trapped at the field in-

tensity maximum of red-detuned dipole traps, preventing simultaneous trapping of ground

states and Rydberg atoms [137]. Blue detuned traps can in principle be used to match

the level-shift of the ground states and Rydberg states using specific wavelengths [120].

Furthermore, the large extension of the average Rydberg atom extension compared to the

typical lattice dimension induces a strong dependance of the trapping potential on the

sublevels (j, mj) [138].

Another possible limitation to the combined use of Rydberg states and optical traps

is the induced photo-ionization of the Rydberg states[134, 139]. Photo-ionization is also

expected to play a role in dark traps, such as ponderomotive lattices, due to the extent

of the Rydberg atom compared to the lattice size. The calculations in [134, 139] predict

a photo-ioization lifetime increasing with n* and the wavelength of the trapping light.

Nevertheless, for n = 100, the photoionization time for a 5W, 1064 nm trap focused to 50
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ym is expected to be much larger than the natural lifetime of the state.

Simultaneous trapping of ground- and Rydberg-states can be achieved by taking ad-

vantage of the mutli-level structure of low lying states, as recently demonstrated in [135].

In that experiment, the lattice is blue detuned tens of MHz from the transition between

the Rydberg state of interest and a low-lying excited states to create a trapping lattice

for both ground states and Rydberg states. Moreover, the parameters for the lattice can

be chosen to achieve a magical trap, which detunes the ground and Rydberg states by

the same amount. Such a magic trap conveniently eliminates inhomogeneous broadening

of the two-photon resonance.

5.8 Dipole-dipole interactions

Due to their gigantic dipole moment oc n*2eao, Rydberg atoms interact strongly through

the dipole-dipole interaction, acting as microscopic antennas sensitive to each other radi-

ated field. The dipole-dipole interaction is described by the Hamiltonian:

e2 1(- .3(-1 -R)(R -i 2 )
W r 1 - r 2 - (5.31)

47rco R3R2

valid for dipole separations R = IRI larger than the dipole size (ri), (r2). For the peak

densities K = 1012 cm-3 used in our experiments, the mean atomic distance is not

significantly larger than the average orbit radius of the Rydberg states. Nevertheless, the

critical length scale of the problem is the Rydberg blockade length which is determined

by long range interactions between atoms typically separated by R ~ 10 Am, and the

exact nature of the short range interactions is irrelevant for the physics we are exploring

in the context of this thesis. As a consequence, R is treated as a classical vector and not

an operator.

The interaction term V couples the two-atom state in, 1, J, mj) In', 1', J', m',) to all

states In", i", J", m'1) In"', 1"'1J'", m'") allowed by dipole transition. Assuming again the

long range approximation (r), (r2 ) < R, the interaction can be treated in the framework

of non-degenrate second order perturbation theory. Here we restrict ourselves to interac-

tion between two atoms in the same Rydberg state. The interaction induced level shift
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corresponds to the Van der Waals potential:

AEn,i,j,mj = - h  (5.32)

The 06 coefficients is calculated from the dipole matrix elements and the energy levels:

2

0 -__1 q=+1 'q" + 2p'"'2
C6 =~-lPP-2ot - (5.33)47rcoh 2E - E' - E"

je') le")

(for the quantization axis aligned with R). To simplify Eq. 5.33, we used the notations

le) = In, 1, J, mj) (respectively le') = in', 1', J', mi'), ...) for the level associated with the

unperturbed energy E (respectively E', ... ) and t' = e(elrqIC'), I4' = e(ejr qe"). The

calculation of the 06 coefficient is generally nontrivial as it involves a large number of

state pairs and require the exact knowledge of the unperturbed levels and of the dipole

matrix elements [140, 141, 142].

The main contribution in the double sum of Eq. 5.33 comes from the level pairs

le'),| e") with the average energy closest to the energy of the level le): E (E'+ E")/2.

For example, for the 100S1/ 2 states, the main contribution comes from the dipole coupling

to the (99Pj, 100Pj) pairs of states, followed by (98Pj, 101Pj). For the nS1 / 2 states, the

energy difference with the closest level pairs ((n - 1) P, nP) is always positive and the

Van der Waals interaction is repulsive. For the nDj states, the interaction becomes

attractive for n > 43 as the energy difference to the closest level pair changes sign.

The C6 coefficient is highly enhanced for higher Rydberg states by the combined scaling

of the energy defect to the nearest states cx n*-3 and the dipole matrix elements cX n*2,

resulting in the scaling law 0Q c n*11 . This scaling was confirmed by[141], where the C6

coefficients were numerically evaluated (albeit without the fine structure) and fitted, for

the nSj/ 2 states of 87Rb:

C6 = n"(11.97 - 0.8486n + 3.385 x 10-3n 2 ) a.u. (5.34)

Note that for states with azimuthal quantum number I > 0, the interaction depends

on the mj levels considered due to the spherical asymmetry of the magnetic sub-levels.

In addition, an external static electric field mixes states of different parities and gives

107



Rydberg states 46S1/ 2 - 46S1/ 2  77S 1/ 2 - 77S 1 /2  10OS1/ 2 - 100S1/ 2

C6 [(27r)GHz-m)6 ] -5.6 -2.7 x 103 -56.4 x 103

rB (Pm) 3 9 15

Table 5.2: C6 coefficients (from Eq. 5.33,[141]) and corresponding blockade radius for an
excitation linewidth -y = 27r x 10MHz.

the atom a permanent dipole moment in the laboratory frame. As a consequence, the

interaction depends on the orientation of the electric field and becomes anisotropic[142].

The 1/R 6 interaction potential resulting from the perturbative approach is only valid

at large distances R, where the coupling elements v"r = (r(rIVr')Ir") c ' are

smaller than the pairs energy difference A':r" = 2E - E'- E" and in the absence of degen-

erate state pairs such that A':r" = 0. The latter case corresponds to the so-called F6rster

resonances[143]. F6rster resonances can be engineered by tuning the atomic level struc-

ture with electric fields [144]. In that case, it is necessary to diagonalize the interaction

matrix for the subspace Ir)Ir), Ir')Ir"). The eigenenergies of the system {Ir)Ir), Ir')Ir")}
are proportional to 1/R 3 , which correspond to the resonant dipole-dipole interaction:

r',r g"+ V~r' C3~2r -2 (5.35)
2 2 R3

The resonant dipole-dipole interaction also dominates the short range interactions even in

the absence of F6rster resonance. As stated before, for our typical experimental densities

and Rydberg states used, neighboring atoms interact through the resonant dipole-dipole

interactions. Nevertheless, the relevant length scale is set by the long range interactions

which define the blockade radius. For distances smaller than the blockade radius, the levels

are largely by the interaction, and the exact form of the interaction is irrelevant given

that the induced detuning is much larger than the excitation linewidth. In the remaining

part of this work, we simplify the exact interaction potential to the 1/R 6 long-range Van

der Waals interaction for all R.
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5.9 Rydberg blockade

The Rydberg blockade happens when the level-shift induced by the dipole-dipole inter-

action prevents the simultaneous (typically optical) excitation of several atoms to the

Rydberg states, i.e. when the doubly excited Rydberg state is tuned out of resonance by

an amount larger than the linewidth of the excitation [145, 146, 120, 147]. For one-photon

transitions, or two photon transitions far detuned from the intermediate virtual state, the

excitation linewidth -yexc is a convolution of the the Rydberg state lifetime and the laser

linewidth. The Rydberg blockade radius is defined as the distance at which the Van der

Waals induced level-shift becomes larger than half the interaction linewidth:

rB = (21C61 1/6 (5.36)
\ Yexc. J

The underlying principle for the experiments we are describing is that at most one atom

can be excited per Rydberg blockade volume at a given time. For a given excitation

linewidth, the Rydberg blockade grows as n*11/ 6 . In cold atomic systems, where linewidths

are in the MHz range, typical blockade radii are on the order of 10 pum. Precise examples

are given in Table 5.2.

Numerous experiments have explored the Rydberg blockade in cold atomic systems

over the past few years. The most straightforward demonstration of the blockade between

two individual Rydberg atoms was reported in [148, 149], where single atoms are loaded

in two dipole micro-traps separated by a few pm. In this configuration, the transfer to

the Rydberg state of one of the atoms by a ir-pulse strongly inhibits Rabi oscillations

between the ground- and Rydberg- states for the other atom.

The blockade mechanism in large atomic ensembles gives rise to rich cooperative mech-

anisms. For a blockade radius larger than the interatomic distance, readily achieved in

cold dilute gases, each blockaded volume contains a mesoscopic number of atoms Na. Un-

der optical excitation, assuming that the extent of the excitation beam is larger than the

blockade radius and that the electric field couples equally to all the atoms, the Na atoms

within a blockade volume, initially in the ground state 1g), collectively share at most a
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single Rydberg excitation Ir). The collectively excited state is:

Ilr)= 1Na
|1 ) = 1 91, 92, .. ,..gNa) ( .7

j=1

It is equivalent to the first superradiant state of the Dicke ladder for an atomic ensemble

in a cavity. The next collective excited state Na(Na1) i;zyj gi, g2, -, r%, --rj, ---gN) is

tuned out of resonance from the interaction by the Van-der-Waals interaction. As a

consequence, the ensemble of N atoms comprised in the blockade volume behaves as a

2-level "super-atom" [147], with a ground state 0,) = ~al I gi, g2, ---gN) and an excited

state 11,). The dipole matrix element is enhanced by a factor V/7N~ compared to that of

a single atom:

Na

(Ore 1r)I1r) = Na(glerqr) (5.38)
j=1

A continuous excitation field induces Rabi flopping of the super-atom between states

0r) and I 1r) with a V17N enhancement of the Rabi frequency with respect to the non-

interacting case. At the beginning of the excitation, the number of Rydberg atoms in

the blockade volume grows at the same rate NaQ2t 2 as would non-interacting atoms but

it saturates when that number approaches one, corresponding to a Rabi half-period t ~

(v Ha)- 1. The super-atom thus has an enhanced cross-section Nao (Uo is the resonant

single-atom cross-section). This strongly enhanced cross-section at high density provides a

single-photon absorption probability close to unity, a key requirement for quantum optical

nonlinearities (see Chapter 2).

The blockade-induced saturation of the Rydberg excitations density in atomic clouds

has been observed in several experiments over the last decade, [150, 151, 152, 153]. In

these experiments, Rydberg atoms were optically excited using one and two-photon tran-

sitions, and the saturation of the number of Rydberg atoms is measured by field ionization

subsequent detection by microchannel plate detectors. The cooperative enhancement of

the Rabi oscillation, a clear signature of the coherent collective behavior, has recently

been reported in [154] (it had been previously directly observed for two atoms [148] and

indirectly for large ensembles [152]).
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The Rydberg blockade was initially proposed in the context of quantum gates between

individual neutral atoms [145, 146], as implemented in [148, 149]. Subsequent theoret-

ical efforts on quantum information processes based on Rydberg blockade, including its

extension to atomic ensembles and quantum optics, are reviewed in [120].

5.10 Rydberg EIT

In this section, we focus on the applications of the Rydberg blockade to quantum optics.

By coherently coupling photons to Rydberg states, it is possible to map the correlations

emerging from the atomic interaction onto the photonic field. A direct application is the

realization of single photon sources [155], based on the directional retrieval of Rydberg

excitations in high density atomic medium with an excitation volume smaller than the

blockade sphere. As the spin-wave imprinted in the medium by the write beams carries

at most one excitation, the retrieved pulses exhibit a large suppression of two photon

probability. For such a scheme, the directional photon retrieval is limited by the optical

depth in the blockade volume.

A closely related phenomenon is the Rydberg blockade of photons propagating under

Electromagnetically Induced Transparency (EIT) conditions. It was first pointed out in

[156] that ladder-type EIT schemes where Rydberg act as the second long-lived state

generate strong coherent interactions between photons. Under Rydberg EIT conditions,

a single photon pulse entering the medium is adiabatically transformed into a dark-state

polariton, which can essentially be pictured as a Rydberg excitation traveling with re-

duced group velocity and collectively shared by all the atoms within the volume of the

compressed pulse. Due to the Rydberg blockade, at most one polariton can exist per

blockade volume. The blockade radius

rb = (2 IC 61 /'YEIT)1/ (5.39)

is the distance at which the transmission properties of the medium are strongly modified

due to the interaction induced detuning of the Rydberg state by an amount larger than
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the EIT linewidth
Q2

YEIT = (5.40)
F - 2iAJ

Here Q, is the Rabi frequency of the control field, A the detuning from the intermediate

excited state and F the decay rate of the intermediate state.

For two or more polaritons within a blockade volume containing a Rybderg excitation,

the effect of the control field is effectively cancelled and the probe photons interact with an

ensemble of two-level atoms (the two levels being the ground state and the intermediate

excited state). Depending on the detuning A from the intermediate level, the difference

between the 3-level and the 2-level susceptibility resides mainly in a change of transmission

on resonance (A - 0) or a change of index of refraction at large detuning (JAI > F),

generating respectively dissipative and dispersive interactions between photons.

Rydberg EIT and the associated nonlinear effects were first demonstrated in the group

of C.S. Adams [63] and were subsequently theoretically and numerically investigated in

the low density and low excitation limit [61, 157]. The peak atomic densities reported

in [63], where experiments are carried out in a compressed magneto-optical trap, are

1.2 x 1010 cm- 3, corresponding to an optical depth per blockade volume ODB <; 0.1 for

a blockade radius ~10 pim. Dispersive blockade-induced optical nonlinearities were also

recently reported in the low-density limit [64].

In Chapters 6, 7, 8, we present an experimental realization of Rydberg EIT in a density

regime where the effective interactions are significant enough at the single photon level

to imprint strong correlations on the probe field.

5.11 Summary of properties of Rybderg atoms

112



Quantity Scaling law 87 Rb, 100S 11 2  Ref.

Ionization Energy E, -Rn*- 2  350 (27r) GHz [116],[117]

Level Spacing E,+1 - E, Rn*-3  7.1 (27r) GHz [117],[115]

Average orbit (r) ao n*2 0.75 prm Eq. 5.7

Radial dipole matrix element e ao n*-3/2 To 5P state: [1581
(RailerjRar y) (to low-lying state) 4.5 e aon*-3/2

Radial dipole matrix element *2
(Rn,1IerIRn',v) (to close Rydberg state) e a0 r

Spontaneous lifetime r n*3 1.5 ms [127]

Blackbody lifetime rBB h n *2 0.5 ms [129],[127]

Scalar polarizability ap a3 n*7  6.2 GHz/(V/cm- 1) [130]

C6 coefficient C6  Ra 6n*" -56 (27r) THz pm 6  [141]

Table 5.3: Summary of the scaling laws for Rydberg atoms. As detailed in the previous
sections of this chapter, these quantities have simple power laws with the primary quan-
tum number n* (corrected for the quantum defect) and the order of magnitude of the
corresponding quantities can be derived from the scaling laws presented in the table (note
that factors of order 1 are neglected). The values for the 100SI12 states are calculated
using the references in the last column.
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Chapter 6

Experimental setup for Rydberg

blockade induced nonlinear optics

6.1 Requirements

In this section, we detail the requirements necessary for the observation of quantum non-

linearities at the single photon level using Rydberg Electromagnetically Induced Trans-

parency (EIT) [62, 159]. In Rydberg EIT, the control field can be tuned on resonance to

obtain dissipative interactions (the corresponding results are described in Chapter 7) or

out of resonance from the intermediate short-lived state, leading to dispersive interactions

between photons (described in Chapter 8). We first turn towards the requirements for

dissipative nonlinearitites, for which the control field is tuned close to resonance with the

intermediate to Rydberg state transition. In this case, the Rydberg blockade is given by

(see Eqs. 5.39,5.40):

rb (2IC61F) 1/6 (6.1)

Ultimately, the blockade radius is limited by the residual decoherence which sets a lower

limit on the control field Rabi frequency. Strong dissipative interactions happen at the

single photon level, if the atomic density is high enough to obtain a large absorption

probability per blockade volume. This condition is satisfied if the resonant absorption

length in the medium l(z) = (p(z)o-o)-1, related to the total optical depth by OD =
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f dz (la(z))-', is significantly smaller than the blockade radius rb. In that case, the optical

depth per blockade radius ODB fulfills the condition:

ODB = -1. (6.2)
la

For a medium of length rb, it also corresponds to the requirement for compressing a

bandwidth limited pulse in the medium, guaranteeing interaction between single-photon

pulses.

At large detuning of the control field, JAI > F, the probe absorption in the absence

of control field decreases as OD(F2 /4A 2) and the dissipative interactions induced by the

Rydberg blockade are suppressed. In that regime, the linewidth is narrowed and is given

by the AC-Stark shift induced by the control field on the Rydberg level ~ 2/ A (see

Appendix A). The blockade radius becomes

rB 4 (A- 61) 1/6  (6.3)

When the probe field frequency satisfies the two-photon resonance condition, at low

probe rate, the EIT cancels the phase-shift imprinted by the index of refraction. In con-

trast, several polaritons propagating simultaneously experience the off-resonant index of

refraction of the ground- to intermediate-state transition, OC F/A. Ideally, for applica-

tions to quantum information science, the atomic density of the medium should be large

enough to produce a conditional phase-shift #B on the order of 7r per blockade volume:

2TBF F
0B = - - = ODB - 7r (6.4)

la 4A 2A

As an ideal gate needs to be operated in the regime JAI > F to minimized losses, the

density conditions for dispersive interactions are more stringent than for dissipative in-

teractions (note that due to the r- 6 scaling of the Van der Waals interactions, the ratio

between the off-resonant and resonant blockade radius increases only slowly as (A/F) 1/6).

Besides large atomic densities, the transverse confinement of the probe photons to

within a blockade radius is a key requirement to prevent simultaneous propagations of non-

interacting photons and observe single photon nonlinearities in the intensity correlation
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function of the transmitted light. In that regime, the interaction dynamics between the

photons can be considered unidimensional. This condition is satisfied by focusing the

probe to a beam waist

WO < rb (6.5)

over a distance comparable to rb.

Beyond two-body effects, many-body interactions can create highly correlated states

of light, for example by retrieval of crystallized Rydberg excitations [36]. Rydberg crystals

were recently imaged for a two-dimensional ultra-cold gas in an optical lattice [37 and

indirectly probed for a one-dimensional system [160]. In both cases, the crystal were

spontaneously excited, although the coherent preparation of a crystal with a definite

number of excitation is in principle achievable by using a chirped pulses which maintains

the light on resonance with the Rydberg state as its energy shifts with the number of

Rydberg excitation in the cloud [36]. The adiabaticity of the process ensures that the

atoms are prepared in the ground state of the system, corresponding to an equal distance

between the Rydberg excitations. The spatial correlations of the crystal can then be

mapped onto temporal correlations of a light field by photon retrieval of the Rydberg

atoms. Due to the collective character of the Rydberg excitations, the retrieval of the

photons is preferentially directional at large atomic densities and would constitute a source

of highly correlated trains of single photons.

Obviously, the observation of these highy correlated states of light requires a one-

dimensional medium of length L longer than the blockade radius and simultaneously a

high optical depth per blockade radius ODB > 1. In general, such a medium will also

enhance two-body interactions due to the increased interaction length for co-propagating

photons. For such a medium, it is nevertheless important to take bandwidth effects into

consideration. In general, the Rydberg blockade induces atomic correlations on the order

of the blockade radius. These correlations can only be coherently transferred to photonic

states with high efficiency if ODB >> 1, and without deformation if the extent of the

spin-wave correlations ~ rb is larger than the extent of a compressed bandwidth-limited

pulse, vgrp - L//OD. As a consequence, the maximum number of correlated photons

N, sustained by the system is limited to:
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L
N. r,-< U< (6.6)

rb

This conditions also sets a lower bound on the necessary density for the retrieval of many-

body correlated states of N. photons, using ODB - OD/N,:

Ne < / < ODB (6.7)

These conditions are technically hard to achieve for N. > 3.

6.2 Overview of the experimental setup

As detailed in the previous section, the two crucial requirements for achieving optical

quantum nonlinearities based on Rydberg EIT are a quasi-one dimensional medium de-

fined by the transverse mode of the probe beam, a-, rb > wO (where Uj is the transverse

extent of the medium) and an atomic ensemble of density p > (oorb)-1 where ao is the

resonant atomic cross-section for the probe field (equal to 3A 2 /(27r) for the cycling tran-

sition between streched states). The minimal Rydberg blockade radius is limited by the

necessity for the EIT linewidth to overcome the decoherence rate between the ground-

and Rydberg-states. Typical numbers are given in Table 5.2. For a blockade radius of 5

[m, ODB reaches unity for an atomic density p = 0.7 x 1012 cm-3.

Such densities can be achieved by loading atoms into a focused far-off resonant dipole

trap (FORT) with longitudinal confinement, such as a crossed dipole trap or a single

beam lattice. In principle, the maximum atomic density does not depend on the exact

trap geometry. As a consequence, we favored a geometry for which OD > ODB, i.e.

an elongated cloud along the probe light propagation, with an aspect ration limited by

the condition a1 > wo. There are several advantages for this geometry, compared for

example to an interaction volume reduced to a single blockade volume[155, 161]. First,

for co-propagating photons, the interaction time between the photons is increased and

the effects of the nonlinearities (for example the emergence of a photon bound state as

described in Chapter 8) are enhanced. For counter-propagating pulses, a large total OD

ensures that both pulses fit entirely in the medium simultaneously and are thus forced
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to interact. Finally, many-body effects leading to the coherent preparation of highly

correlated states of light, such as Rydberg crystallization, require a medium of length

L > rb.

To that end, we load the atoms in a crossed-dipole trap. The trap is formed by two

orthogonally polarized beams with waists wt=50 pm intersecting at an angle of 320. The

centerpiece of our experiment and the essential components inside the vacuum chamber

are depicted in Fig. 6-1.

6.3 Vacuum chamber

The vacuum chamber was custom-built and assembled following the guidelines in [162].

It provides optical access for the MOT cooling beams, the probe beam along the opti-

cal access and the elongated cross dipole trap as well as large viewports at the top and

bottom for high resolution imaging, and enough volume for electric field plates, a chan-

neltron and Rb dispensers. The procedures for ultra-high vacuum assembly are standard,

and we here report on a few specific points of interest. Regarding the cleaning process,

the first observation is that gaskets should not be cleaned with sonication as it irreme-

diably damages them, either due to the pitting during the sonication process or due to

the formation of oxidation layers. In general, gaskets should be used directly from the

manufacturer. Similarly, sensitive components of the vacuum assembly, such as optical

components, viewports and feedthroughs, should not undergo sonication. The channel-

tron was cleaned with solvent in the presence of sonication. Kapton insulated wires should

not be cleaned with acetone or sonicated. An oxide remover (Caswell Pickle#4) was used

for the copper parts who were subsequently stored in a sealed container.

The chamber was assembled directly on the optical table and evacuated using a turbo-

pump backed by a rotary vane pump (Varian DS102) separated from the turbo-pump by

a valve and a micro-maze fore-line trap (MMA-102-2QF) to avoid back-flow of oil and

organic components in the turbo-pump. Kwik-flanges were used for all connections after

the exhaust of the turbo-pump. The exhaust of the rotary pump was connected to Welch

oil mist eliminator. A mass spectrum analyzer (SRS, RGA200) was inserted between

the valve to the vacuum chamber and the turbo-pump to measure the partial pressure
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Figure 6-1: Rydberg EIT setup. a, Top view of the central part of the vacuum
chamber (left) and 3D view of the essential component inside the vacuum chamber (right)
illustrating the laser arrangement. The atoms are loaded in a crossed dipole trap, with
two beams intersecting with an angle of 32'. The trap beams are focused to a waist
of 50 pm with 15 cm lenses located outside the vacuum chamber. Inside the chamber,
two 3 cm achromatic doublet lenses define the optical axis along the longitudinal extent
of the cigar-shaped cloud and focus the probe and control beam at the center of the
cloud . The lenses are held in a copper structure, to which eight electric field plates
in an octopole configuration are attached through electrically insulating components. A
channeltron shielded by a Faraday cage detects ions in the chamber. Four viewports in
the horizontal planes are used for the trapping and repumping beams of the MOT, as well
as two large 4.5 inch windows at the top and bottom of the chamber. All windows were
anti-reflection coated for the appropriate wavelength. b, Artist rendition of the setup,
illustrating the dissipative nonlinear interactions between Rydberg polaritons taking place
in a dense cloud of trapped cold atoms with length of approximately 10 blockade radiuses.
The interaction is enforced by confining the transverse extent of the probe beam to less
than a bockade radius.
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from the background gas. During the evacuation, the background pressure was strongly

dominated by hydrogen degassing from the steel of the chamber. N2, H20, and CO 2

also contribute to the background pressure at the beginning of the evacuation. An ion

pump (Varian, VacIon Plus 20, Ion Diode, 20 L/S), a Ti-Sublimation pump (Varian, TSP

controller 929-0022) and an Ion Gauge (Varian, UHV-24) are permanently attached to

the vacuum chambered.

During the evacuation, the chamber was heated to 180'C using heating tape . The

limiting temperature for our assembly is the cement used for the achromatic doublet lenses

(NOA61 from Norland). The nominal damage value is 125'C, but no visible damages or

change in transmission were observed after baking a replacement lens to 215'C. However,

the cement changed color and became brittle after heating to 240 C. The lenses are glued

inside a copper block with a close fit to guarantee alignment, using vacuum temperature

compatible glue Epo-Tek ND353. This glue has the advantage of sustaining high baking

temperature (200'C). It also has a large thermal expansion coefficient (260 x 10- 6/,C

above the glass transition occurring at 90'C and 54 x 10- 6/ C below the glass transition),

compared to copper (17x 10- 6/C). Below the glass transition, it is extremely stiff and

adhesive. During a first bake of the vacuum chamber, one of the lens presented cracked,

likely due to the expansion of the glue. For the second bake, the chamber was only heated

to 125'C and the lens is held in place with a springy piece of stainless steel.

The four Rubidium dispensers (SAES Getters, RB/NF/4.8/17 FT 10+10) were de-

gased for hydrogen during the bake by increasing current by 0.1 A steps up to 3 A (waiting

for the pressure to stabilize for every step). We then ran 30 seconds pulses up to 5 A

until the pressure was affected by less tan 20%. After the evacuation process, we mea-

sure a pressure of less than 2 x 10' Torr using the ion pump current as a gauge and of

1.0 x 10' Torrs (with gas factor 1.0) using the ion gauge. The background pressure rises

to - 2 x 10- Torr when the dispensers are continuously ran at 3 A (from the reading of

the ion pump current).
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6.4 Probe and control field setup

The probe beam is focused to a 1/e 2 waist wo = 4.5 pm by a confocal arrangement

of achromatic doublet lenses with focal length 30 mm and diameter 6.25 mm (Edmund

Optics, NT49-308). The aperture angle (i.e. the ratio between the focal length and the

radius of the lens) is chosen to mitigate the focus size of the probe beam and the acuteness

of the FORT arms angle, which sets the elongation of the cloud along the optical axis .

Furthermore, is has been observed that static charges on lenses with working distances

smaller than 1 cm generate visible level-shifts of the Rydberg levels unless their surface

is grounded with a transparent metallic coating [163]. Our lenses are not coated and are

mounted in a copper structure, screwed to two plates soldered to the vacuum chamber.

The 780 nm probe light expands from the fiber tip with a Gaussian waist of 2.8 prm

(measured in the far field with a knife edge). It is collimated by a 18.4 mm aspheric

lens (Thorlabs C280TME). After the 30 mm achromatic doublet, we measured a probe

waist wo = 4.5 pum (also inferred from a knife edge measurement in the far-field). The

corresponding Rayleigh range is ZR = 81.5 pm. In this configuration, the lens operates

close to its diffraction limit A/(2 N.A.) = 3.75 pm. Over the length of the cloud, the waist

average (weighted by the atomic density) is 4.9 pm.

The control field is produced by a Toptica TA-SHG Pro system consisting of an ex-

ternal cavity diode laser (ECDL) operating around 960nm, a 1W tapered amplifier and

a frequency-doubling crystal in a circulating cavity. The tuning range of the laser, from

479 nm to 488 nm couples the 87Rb 5P3/ 2 state to Rydberg states with primary quantum

numbers between n - 20 and the ionization limit. After passing through an Acousto-

Optic Modulator (AOM), the control light is guided by a polarization maintaining optical

fiber to the experiment table. There, it expands from a 2.3 pim waist at the output of

the fiber and is collimated by an 4.5 mm lens, focusing the beam to a 15 pum waist at

the position of the atomic cloud. Note that there is a trade-off between the requirements

for an homogeneous control field intensity over the extent of the probe beam and the

high power necessary for strong coupling to high lying Rydberg states. The control field

power entering the vacuum chamber is limited to 100mW (corresponding to 250 mW at

the output of the doubling cavity).

The probe and control beams are overlapped before passing through the chamber,
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and split after, by a set of dichroic mirrors (Thorlabs DMLP567). The exact alignement

(for co-propagating probe and control beams) is achieved by aligning the beams on a

CCD camera at the center of the chamber (as imaged by the combination of the 30 mm

achromatic doublet and a 30 cm lens) and far outside the chamber. For the counter-

propagating case, a co-propagating beam serves as a reference.

At the output of the chamber, the probe beam is filtered from the control field by the

dichroic mirror and interference filters (SEMROCK, LL01-780), coupled into single mode

fibers and measured by single photon detectors (PerkinElmer, SPCM-AQR-13-FC,with

a deadtime of 40ns). The detection efficiency is typically 0.25 (0.5 due to filtering and

coupling and 0.5 due to the quantum efficiency of the detectors). The single photon pulses

are recorded by a counter (National Instruments card) or time-tagged with a time-resolved

counter (SensL, HRMTime, 4 channels, 28 ns resolution time).

6.5 Dipole trap configuration

In recent years, in conjunction with novel cooling techniques such has polarization gra-

dient cooling [164], degenerate Raman sideband cooling [165], gray molasses [166] and

evaporative cooling[167], dipole traps have been key to many crucial developements, such

as all-optical BEC [168, 169] and degenerate Fermi gases [170], optical lattices [171].

Dipole traps are extensively reviewed in [79].

For our experiment, the trapping light is produced at a wavelength of At = 1064 nm

by Nd:Yag laser (NP Photonics, FLM-50-1-1064.175-1) seeding a fiber amplifier (Nufern,

SFA-PM1064-1OW-2), with a 50 kHz linewidth. After passage through a high power

accousto-optical modulator (IntraAction), the trap power is 5W. The beams are focused

and recollimated from outside the chamber by 15 cm lenses (Thorlabs, LA1433) after

passing through a 10/3 times magnifying telescope. The waist (measured outside the

chamber) is 50+2 pm and the beam exhibits a small amount of astigmatism (giving

approximately a 1 mm difference in the position of the horizontal and vertical focus).

After a first path through the vacuum chamber, the dipole trap is re-collimated, sent

through a half-waveplate and focused back in the chamber, crossing the first arm with

an angle 6 = 32' at the center of the chamber (see Fig. 6-1). The incoming light is
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linearly polarized, with a polarization vector orthogonal to the horizontal trap plane .

For an on-axis half-waveplate, the retro-reflected beam creates a lattice with periodicity

d = At/(2 cos(6/2)) along the optical axis. For the work presented here, we fully destroy

the interferences by rotating the linear polarization of the second beam by r/2. As a

result, the reduced longitudinal trapping frequencies attenuate the parametric heating of

the atoms under modulation of the trap. In this configuration, the trapping frequency

are wz = 27r x 315 Hz longitudinally, and wy = 27r x 1.10 kHz and w. = 27r x 1.14

kHz transversally (horizontally and vertically respectively) and the peak trap depth is

-300 piK. The polarization of the dipole trap is linear and orthogonal to the propagation

direction of the reflected beam. In that case, the ground state shift is independent of the

particular magnetic level and is given by:

7rc21r 2 1
AU(r) = ir3f+ 3 I(r) (6.8)

2 ( )D (W - WD2) WD1 P- WD1))

where I(r) is the sum of the intensities of the two arms of the dipole trap. The peak

frequency shift in the ground state is 27r x 7 MHz (equivalently 336 paK). The level-shift of

the excited state at the center of the trap depends on the particular magnetic sub-level.

6.6 Loading procedure

The atoms are initially cooled in a Magneto-Optical Trap (MOT) with 1 inch diameter

beams. The loading of the MOT is generally described by a simple rate equation:

N = RmOT - FMN (6.9)

where RMOT is the loading rate, i.e. the number of atoms entering the trapping region

per unit of time with low enough velocity to be captured and F- is the lifetime of the

atoms in the MOT, typically limited by collision with background atoms or hotter 87 Rb

atoms. From this simple model, the number of atoms in the MOT saturates with a time

constant F- to NMOT = RMOT/FM. For our experiment, the lifetime Fj is 13s and

the atoms are loaded from the getters flux. We also notice that both FM and R increase

with the current getters and that RMOT OC I2' . In principle, if the background collisions
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Figure 6-2: Dipole trap. a, Countour plots of the trapping depth in the horizontal plane
in pK for a power of 5 W per beam. The maximal trap depth is 336 pK. b, Contour
plots for the density in 1010 atoms cm- 3 for a peak density K = 2 x 1012 atoms cm-3

at a temperature of 40 pK. Contours are plotted for K = 2 x 1011 to 1.8 X 1012 cm- 3,

by increments of 2 x 1011 cm-3. The red lines delimit the waist of the probe, focused
to 4.5 pm. c, Absorption image of the atoms in the crossed dipole trap after 0.1 ms of
expansion time.

are dominated by the partial pressure of Rubidium, RMOT should increase linearly with

FM as the getter current increases. If the background pressure is dominated by another

species, Im is independent of the getters current. For our experiment, RMOT increases as

FM, suggesting that the background pressure is not strongly dominated by Rubidium or

that the getters have higher hydrogen degassing rates at larger operating temperature.

The MOT magnetic field is generated by two coils in anti-Helmholtz configuration

located outside the chamber. The coils are wound with 0.1 inch sided square copper wire

around a hollow cylinder of radius 3.175 inches, water-cooled and partially cut to avoid

eddy currents. The coils count 100 turns, provide a gradient of .97 Gauss/cm/A, and

have a resistance of 1 Ohm each. They are mounted in parrallel with transient voltage

suppressors (TVS 1.5KE100CA) to damp inductive spikes during fast turn-on and -off of
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the magnetic fields. Both coils are mounted in series with a high current solid state relay

(Crydom D1D80) and powered by a computer-controlled current supply. The turn-off

time of the field from the peak gradient value (40 G/cm) is shorter than 500 Ps.

We use a short cycle time of 330 ms, with a MOT duty cycle of ~ 60%, allowing partial

recapture of the atoms. At the beginning of the cycle, the trapping light (consisting of

~ 1.5 inches collimated beam cut to a 1 inch diameter for more homegeneous profile, with

a power of 30mW per beam) is red detuned by 14 MHz from the D2-line F = 2 -+ F' = 3

cycling transition in presence of a 10 G cm- 1 magnetic field gradient. After 230 ms, - 106

atoms are loaded in the MOT. The atomic ensemble is compressed [172] by ramping up

the magnetic field gradient to 35 G/cm in 10 ms followed by a 50 ms plateau. At the

beginning of the compression, the MOT trapping light intensity is halved and the repump

power reduced to an intensity of - 10 piW cm 2 . As a result, the density is increased by a

factor 1.5 (the two-fold volume decrease seems to be accompanied by a loss of 25% of the

atoms). From absorption imaging , we measure a peak density in the compressed MOT of

3 x 1010 atoms cm-3 although this number assumes the largest resonant cross-section and

perfect optical pumping to the stretched state by the imaging beam. As a consequence,

the imaged densities are to be taken as a lower limit. The MOT magnetic field is suddenly

(in less than a ms) shut-off for 18 ms of molasses cooling. During the molasses phase, the

MOT light is detuned by an additional 55 MHz. From time-of-flight imaging, we assess

a temperature of 35 pK after optimization of the cancellation of stray magnetic fields

[173] by three pairs of bias coils, located outside the chamber. The difference between the

measured longitudinal and transverse temperatures is generally less than 10%.

The dipole trap is turned on to full power at the beginning of the compression. The

loss and loading mechanisms at play are extensively described in [174]. A crucial step to

reach high atomic densities in the trap is the reduced repumper intensity - 10 PW cm-2

during the compression and molasses cooling. At low repumper intensities, the atoms

populate mainly the F = 1 hyperfine state, where they experience a smaller scattering

by the MOT trapping beam than in the F = 2 state. The MOT light scattering induces

two type of interactions between the atoms [175]. Firstly, light-assisted collisions, i.e.

collisions between ground-state and excited atoms in which part of the excited atom energy

is converted into kinetic energy, are detailed in [176]. Secondly, radiative trapping of the
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light, i.e. reabsorption of the photons scattererd from a specific atom by the surrounding

atoms, mediate an effective repulsive force between atoms. As a consequence, the loading

in the dipole trap is optimized for an experimentally determined value of the repumping

power which mitigate theses effect with the cooling and trapping provided by the MOT

beams. At the end of the molasses phase, the repumper is shut off 2.5 ms before the MOT

trapping beam and the atomic population is optically pumped in the F = 1 ground state.

We then proceed to optical pumping to the F = 2, mF = 2 state (see section 6.9).

We use time-of-flight absorption imaging to determine the temperature and the in-

trap extent of the atomic cloud. The imaging is done along the vertical direction in

the presence of a few Gauss of vertical magnetic field, using a 1:1 imaging system and

circularly polarized imaging light for expansion times ranging from 50 As to 5 ms. The

atoms temperature in the trap at the end of the molasses phase is 40 t 5PK and the

cloud has a Gaussian profile with longitudinal and transverse (horizontal) r.m.s. sizes

oz 36pm and oi - 10pm. After 4 ms of expansion time, we measure 5 x i04 atoms,

corresponding to a peak density of AfAb, 20.8 x 1012 atoms cm- 3 . By changing the loading

time of the MOT, we vary the number of atoms loaded in the trap. We observe a saturation

of the peak density to AfAb, for 2 x 10' atoms loaded in the trap. The values for the number

of loaded atoms and density we obtain by absorption imaging are a factor 2 to 3 smaller

than the values we obtain by measurement of the longitudinal OD after careful optical

pumping, for which we infer a peak density M = 2 x 1012 atoms cm 3 . The discrepancy is

likely due to the imperfect pumping from the imaging beam as our measurement assumes

the maximal atomic cross-section. The saturation of the density in the trap is possibly

due to two-body hyperfine state changing collisions, evaporative cooling and three body

losses which reduce the lifetime of the atoms in the trap [79].

When monitoring the atoms in the trap, we observe a rapid loss over a few tens of

ms, followed by a slower exponential decay with a timescale of 950 ms (see Fig. 6-3).

The initial loss is due to collisions between trapped atoms. The remaining number of

atoms decrease further if the trap height is lowered. This behavior is characteristic of

evaporation and inelastic collisions, during which some atoms acquire a fraction of the

trap depth in kinetic energy [176]. Ground state changing collision for the atoms in the

F = 2 ground state can also eject atoms out of the trap (although this process should be
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Figure 6-3: Lifetime in the Dipole Trap. a, Number of atoms in the trap as a function
of time, over a timescale of 2 s. The number of atoms is measured by absorption imaging
after the trap shut-off. An exponential fit to the data measured after the first 100 ms
yields a lifetime of 950 ms. b, Number of atoms in the trap for a power per beam of 5 W
(red squares) and a 2.5 W (blue dots). Inelastic collisions reduce the density during the
first 100 ms, followed by the background pressure decay rate visible in a.

independent of the trap power as the hyperfine splitting of the ground state -1.4 mK is

larger than our maximal trap depth). The departure of the hotter atoms from the trap

leads to evaporative cooling and a decrease in temperature from 55 pK to 30 pK. The

long lifetime - 1 s after initial evaporation is due to collisions with the background gas

and is typical of a pressure of ~ 2 Torr [79].

The finite temperature of the atoms in the trap is responsible for inhomogeneous

broadening of the excitation linewidths. The EIT is mainly affected by the broadening

of the two-photon transition between the ground- and Rydberg states. For ground states

atoms, the difference in level-shift for atoms at the center of the trap and 1-- away for

an harmonic trap is 1kBT ~ 350 kHz. The peak Rydberg state ponderomotive shift is 3

MHz, contributing an approximate inhomogeneous broadening of 150 kHz. Note that the

inhomogeneous Stark shift mainly plays a role along the optical axis, as wo < ua. For our

experiment, the total two-photon broadening caused by the inhomogeneous Stark shift
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Figure 6-4: Atom loss during the measurement. a, Optical Depth OD as a function
of time during the free expansion of the beam after the dipole trap shut-off. The blue
line is a guide to the eye. Measurements in expanding clouds are limited to 100 Ps.
b, Lifetime of the atoms in a modulated trap as a function of the trap square-wave
modulation frequency. Here, a frequency of 100 kHz corresponds to a period of 10 1us.

~ 500 kHz dominates the other broadening mechanisms, typically the two-photon laser

linewidth (250 kHz) and the Doppler effect (250 kHz for co-propagating probe and control

fields, 50 kHz for the counter-propagating case). As a consequence, EIT experiments Are

carried out after the shut-off of the dipole trap in an expanding cloud (during 100 Ps)

or during the off-time of a modulated trap (typically modulated at an angular frequency

~ 100 kHz much larger than the trapping frequency). For a modulated trap, the OD is

reduced due to the average half-trapping potential but the measurement time is extended

to 2 ms when the interferences between the beams of the dipole trap are carefully cancelled

to avoid the creation of a lattice with large trapping frequencies. A higher limit for the

modulation trap frequency is set by the group delay in the medium.

The positioning of the elongated cloud along the optical axis is crucial to our exper-

iment. The alignment of the cloud in the horizontal plane is done by using the probe

beam as a "push" beam with typical powers of a few hundreds of MW and blue detuned

by 100 MHz from the F = 2 -+ F = 3 transition. The atoms are expelled from the higher

intensity region of the probe beam, an effect clearly visible by imaging absorption (see

Fig. 6-5,a). The longitudinal positioning of the cloud along the optical axis is sensitive
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Figure 6-5: Alignement procedure of the dipole trap. a, Expulsion of the atoms by
a blue-detuned probe field. The clearly delimited maximal intensity probe region is used
for the initial alignment of the trap (see Fig. 6-2,c for comparison).b, Depumping rates
as a function of the central position of the atomic cloud for atoms in a compressed MOT

(red diamonds) and a dipole trap (blue dots). The initial atomic population on the probe
transition is removed by off-resonant scattering. The depopulation rate is extracted from
the intermediate slope of s-shaped transmission curves and exhibits a clear peak when the
cloud is positioned at the focus. The positions of the cloud are measured by absorption
imaging. The lines are Gaussian fits.

to the probe beam intensity. At powers close to saturation intensity, the probe light

F = 2 -- F = 3 induces off-resonant depumping of the atoms out of the F = 2 hyperfine

ground state. As a function of probing time, the transmission follows an s-shaped satu-

ration curve as the initial opacity of the cloud is reduced by the off-resonant depumping.

The depumping rate, proportional to the intermediate slope of the s-curve, depends on

the intensity of the probe beam and is maximal when the center of the cloud is located

at the focus. By varying the position of the dipole trap along the optical axis, we scan

the probe beam intensity as evidenced in Fig. 6-5,b. As a function of the position, the

depumping rate follows a bell curve with a HMHW on the order of the Rayleigh range of

the probe beam. The fit uncertainty of the center of the bell-curve is typically ± 20 pm.
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6.7 Diagnostic tools

6.7.1 Field-ionization

Rydbergs atoms are easily ionized by static electric fields as low as a few V cm- for

states with principal quantum number n > 100 (see Chapter 5). Field-ionization is a

widely used technique for Rydberg atom experiments, and has been instrumental to the

remarkable developments of micro-wave Cavity QED [132] and to the demonstration of the

Rydberg blockade in cold atomic ensembles[150, 151, 152, 153, 143]. Recently, microscopic

ionization electrodes in combination with a spatially resolved multiple channel plate have

been use to image the spatial correlations of a cold Rydberg gas [177]. In contrast, Ryberg

atoms are difficult to detect optically due to the low electric dipole coupling to ground

states. The electrodes design is identical to that of the Pfau's group (Stuttgart) [158]. It

consists of two concentric rings offseted from the horizontal plane (see Fig. 6-1). Each

ring is divided into four plates which are individually addressable and allow for a large

variety of electric field configurations. The 1 inch vertical spacing between the plates and

inner diameter of the ring provides optical acces for the MOT beams. The large aspect

ratio of the plates (13 mm wide and 0.5 mm thick) increase homogeneity of the produced

fields. The plates are equivalent to an octopole cuboid with dimensions 15:15:14 mm (see

[158, 178]). The electrodes are machined out of stainless steel. They were rounded off

and polished to avoid electrical breakdowns in the chamber. The electro-polishing was

done in a solution of phosphoric and sulfuric acids [158], at a current of 5 A for one

minute. The plates are attached to the central copper structure with ceramic (MACOR)

screws and 1 mm MACOR spacers. Using barrel connectors, they are connected to a high

voltage feedthrough by 1.7mm thick Kapton coated wires. The barrel connectors and

insulating elements are recessed beyond the field plates to shield the atoms from stray

electric fields created by static charges. The voltage on the field plates can be controlled

with a high voltage switch (Behlke, HTS 61-03-GSM). The turn-on and -off time of the

high voltage depends on the exact capacitive load of the plates and the cables, and has

been demonstrated to be on the order of a few tens of ns in similar setups [158].

Ions are detected with a channeltron electron multiplier (Burle, Magnum 5901 Chan-

neltron). A positive ion is accelarated towards the entrance of the channeltron, which is
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maintained at negative high voltage of -2 kV. Upon collision with the walls of a secondary

emission material, it releases an electron which is accelerated towards the grounded end

of a spiral-shaped funnel, creating a cascade of electrons collected as a current pulse at

the output of the channeltron. Typically, a single ion creates a short 10 ns pulse of 106

electrons (equivalent to approximately a 10 mV negative pulse across a 50 Ohm resistor).

The output of the channeltron is connected to an RF amplifier (ZFL-1000LN) after a

bias-T guiding charges accumulating at the output of the channeltron to the ground to

avoid damaging static voltages at the input of the amplifier. The resulting negative pulses

have an amplitude of 800 mV. The ionization of background atoms creates a measured

800 Hz dark count rate.

The atoms are shielded from the channeltron by Faraday cage. The entrance of the

cage is made of a copper mesh with 85% open area. A negative voltage of a few Volts

in conjuction with the proper field configuration from the electrodes can be applied to

the cage to directionally guide the ions towards the entrance of the cage, before they are

accelerated towards the large negative voltage at the channeltron input.

6.7.2 Absorption imaging

Our current absorption imaging system consists of an imaging beam with circular polar-

ization overlapped with the vertical MOT beam and an achromatic doublet lens with a

focal length of 10 cm (Thorlabs AC508-100). The MOT beam is propagating at a small

angle with the vertical optical axis, and is reflected by a 6 mm diameter mirror positioned

in the focal plane of the imaging lens (see Fig. 6-6). It is then collimated and retro-

reflected with an orthogonal circular polarization. The small mirror has little impact on

the quality of the imaging, as it is located far from the image focal plane of the lens,

which works at infinite conjugation ratio. A 10 cm plano-convex lens focuses the beam

on a CCD camera (Unibrain 501b). The imaging light is generated by the MOT laser

and resonant with the F = 2 -+ F' = 3 cycling transition. The MOT repumper is used

to pump the atoms into the F = 2 hyperfine ground state. The atoms are imaged in a

vertical magnetic field of 3 Gauss, provided by the bias coils. The imaging light optically

pump the atoms in the (F = 2, mF = 2) magnetic sub-level, which provides the highest

cross-section for the circularly-polarized imaging light.
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Figure 6-6: Imaging setup. a, Schematic representation of the current absorption
imaging system. The imaging and MOT trapping light overlap at a small angle. The
MOT beam is retro-reflected by means of a small 6 mm mirror. A plano-convex lens
sets the 1:1 magnification. b, Absorption image with coherent light of a resolution target
for the high resolution imaging system shown in c. The displayed scale shows distances
in the object focal plane. The objective provides a resolution smaller than 2 Am. c,
Schematics for the high resolution telephoto objective for single Rydberg atoms imaging.
The 3-lens teleobjective consists in a large numerical aperture 10 cm aspheric lens, a 50
cm plano-convex lens and a diverging -3 cm plano-concave lens. The objective is located
outside the viewports (included in the picture).

6.7.3 High resolution imaging of individual Rydberg atoms

Recently, the Rydberg blockade was proposed as a way to image single Rydberg excitations

in dense atomic clouds [179, 180]. In these proposals, Rydberg atoms create opaque regions

for a probe beam traveling under Rydberg EIT conditions orthogonally to the imaging

plane. For imaging systems with a resolution smaller than the blockade radius, individual

Rydberg excitations can be resolved to within the blockade area and provide insight into

many-body phenomena, such as Rydberg crystallization [36, 180]. The specific Rydberg

state used as part of the EIT scheme for the imaging beam Ir') needs to be different from

the state of the Rydberg atom |r) to be imaged. A limitation to this proposal is the
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interaction between the imaging photons themselves due to Rydberg blockade: the rate

of incoming photons per transverse blockade area must be larger than the inverse delay

per blockade radius in order to allow for full transparency outside the blockaded areas.

Ideally, the levels jr) and Ir') along with the control fields can set the separation between

the stationary Rydberg excitations (rb) to be be larger than the blockade radius for the

interaction of the Rydberg excitations with the probe polaritons, (r') and the blockade

radius between probe polaritons (r')[179]:

rb > b > r", (6.10)

Taking advantage of the large optical depth per blockade length Tb, it is possible

to measure the spatial correlations with a resolution r"'. Assuming a pixel size equal

to r' after magnification and a cloud of transvers size on the order of rb, the rate of

probe photons per pixel in a non-blockaded region is Rp. ~ 'EIT la/rb, corresponding

to one photon per group delay through a blockade radius. To minimize the shot-noise

and increase the rate of imaging photons, the control field can be strongly intensified

without large reduction of the blockade radius due to the scaling of the blockade radius

as 'YEIT -1/6, although the limited control field power typically available will constitute a

technical limitation. Finally, the imaging time is limited by a displacement of the Rydberg

excitation by blockade radius and by the lifetime of the Rydberg excitation (both on the

order of - 100ps assuming a temperature of 40 piK and a blockade radius of 10 Pm).

The experimental requirements for individual Rydberg excitations imaging are an

imaging system with pm optical resolution and high detection efficiency. High efficiency

cameras offer quantum efficiency at 780 nm between 30% and up to 95% (using deep

depletion CCDs). The CCD pixel sizes are on the order of 10 pm and require imaging

systems with 10 times magnification for the resolution limit to be set by the optical system

diffraction and aberrations. The CCD noise include dark currents (typically smaller than

1 electron per pixel per second and thus negligible for sub-ms exposure time) and read out

noise. The latter noise corresponds to the uncertainty of the number of electrons retrieved

per pixel and is independent of the number of photons impacting the pixel during the

exposure time. The readout noise is typically of 10 e- and is a fundamental constraint

for low light imaging with less than a few tens of photons per pixel per exposure. Low
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photon number per pixel imaging requires Electron-Multiplying CCD, in which individual

photons trigger an avalanche of electrons instead of a single charge.

The optical resolution of our experiment is limited by the viewports which provide a

numerical aperture N.A. = 0.72. The numerical aperture sets a lower limit to the resolu-

tion, which is in addition affected by geometric aberrations such as spherical aberrations

from the glass windows, astigmatism and coma for off-axis objects. In addition to a res-

olution smaller than the blockade radius, the requirements for the imaging system are a

field of view and a depth of view respectively larger than the longitudinal and transverse

extents of the cloud. We designed a 3-lens telephoto objective depicted in Fig. 6-6. The

light gathering lens is a large aspheric lens (ThorLabs, AL100100-B) with a 10 cm focal

length and nominal N.A. = 0.48, offering a diffraction-limited resolution given by the

Rayleigh criterion: r = 0.61N- = 1.0 pm. The rest of the objective consists in a 50

cm plano-convex lens (Ross Optical, A100-100LPX) followed by a diverging -3 cm plano-

concave lens (ThorLabs, LC1060) to adjust the magnification. Ray tracing simulation

using ZEMAX and including idealized viewports were carried out for on- and off-axis

point sources and for different magnifications ranging from 10-fold to 40-fold. The results

are thoroughly described in [181]. For an on-axis point source, the simulations predict

an Airy disk of radius 28 pm (due to diffraction) and an r.m.s. distribution of 28 pm

(from the ray tracing, i.e. the geometric aberrations) in the image plane for a 20-fold

magnification magnification, giving a resolution on the order of 1.5 pm.

The objective was built and tested outside the chamber using a test target (Thorlabs,

1951 USAF), as well as a viewport similar to that used in the chamber and a CCD

camera with 4.65 pm pixel size (Unibrain 501b Fire-i Camera), using coherent 780nm

light. Results for a 19-fold magnification are shown in Fig. 6-6 and the objective clearly

resolves features with less than 2.5 pm separation, much smaller than our typical Rydberg

blockade radius rb > 10 pm. This objective has not yet been integrated to our experiment.

6.8 Laser system

At the exception of the dipole trap and the control field, all the lasers address the 780

nm D2 transition (5S1/ 2 -- 5P 3/ 2 ) of 8 7Rb. An external cavity diode laser (ECDL) is
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Figure 6-7: Laser locking diagram. A reference laser locked to DAVLL spectroscopy
serves as a reference for the MOT light. The probe ECDL and control frequency lasers are
locked to transfer cavity, which is itself stabilized by the reference laser (see text for a more
detailed description). 'PD':photodiode, 'APD': avalanche photodiode, 'ctrl': controller,
'bw': bandwidth, 'exp': experiment, 'TA': tapered amplifier. The other abbreviations are
defined in the text.

locked to the 85Rb (F = 3 -+ F' = 3)(F = 3 -* F' = 4) crossover line of a Dichroic-

Atomic-Vapor Laser Lock (DAVLL) setup and serves as a spectroscopic reference for the

MOT trapping light (generated by an ECDL followed by a 500 mW Tapered Amplifier)

near resonant with the F = 2 -- F' = 3 transition and for the MOT repumper laser

(DFB Laser, Eagleyard). These lasers are locked to the reference using a frequency offset

lock. The error signal is created by sending the optical beatnote with the reference laser

measured by a high bandwidth photodiode (Hamamatsu) through a delay line circuit

after being mixed down with a computer controlled Voltage Controlled Oscillator (VCO).

The MOT laser also provides the absorption imaging light. Part of the MOT repumper

light is sent through a fiber Electro-Optic Modulator (EOM), producing a superposition

of light resonant with the F = 1 -- F' = 2 and F = 2 --+ F' = 2 used for optical Zeeman

pumping.
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The probe light is generated by a separate 780 nm ECDL. The laser is locked to a high

finesse cavity, which is also used to stabilize the control field. The confocal cavity has a

measured finesse of 10' and is mounted vertically in a temperature controlled chamber.

The probe laser and control field seed laser (at a wavelength of ~ 960 nm) are coupled into

the cavity with orthogonal polarizations and are locked with a Pound Driver Hall (PDH)

technique [182]. The current of the lasers is modulated to create 20MHz sidebands. When

the main carrier frequency is resonant with the cavity, the sidebands are reflected from

the cavity and interfere with the carrier field leaking out of the cavity. A frequency shift

of the laser is immediately reproduced on the sidebands, whereas the field leaking out of

the cavity is delayed due to the travel time inside the cavity, creating a phase sensitive

intereference between the reflected sidebands and the averaged value of the main carrier.

The cavity reflection in frequency space is given by:

r- exp(i W ) - 1
R(W) =AFSR (.1

1 - r 2 exp(iAF(1

where r is the reflection coefficient of the mirrors and AFSR = is the free spectral

range of the cavity, related to the cavity linewidth Av and the finesse F = r by

LAFSR = FAv. The optical power of the incoming field is denoted P = eiwt (P + PieiQt +

P i e-iZt), where PO and P are respectively the carrier and sideband powers. For a laser

frequency near-resonant with the cavity: w = 6w + (27rkAFSR) (k is an integer), the carrier

electric field has an amplitude Y(6w)V IPo ~ i6 Po. For sidebands with modulation

Q > Av, the sideband are fully reflected from the cavity, contributing an electric field

[F(Sw + Q)ei"t + .F(6w - Q)e-i't]\/Th ~ -2i sin(Qt)v/TPi. The amplitude of the signal

from the photodiode oscillating at frequency Q,

6w
PPD = 4 PoP1  sin(Qt) + --- (6.12)

is directly proportional to the frequency shift 6w over the narrow range of the cavity

linewidth. The DC component of the signal is filtered by a high bandwidth bias-T (Pi-

cosecond, 5530B) and the signal is demodulated by the sideband modulation with an

adjustable phase shift to compensate for line delay. The full experimental error signal,

oc -2/PoP 1Im[F(w)] [182] is shown in Fig. 6-8,d.
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For the probe laser, the error signal is fed into a feedback circuit consisting of three

loops. Firstly a slow integrator loop with a bandwidth of a few tens of Hz apply a feedback

to the ECDL Piezzo-transducer (PZT) controller to adjust against slow drifts. A second

intermediate proportional-integral (PI) gain loop returns to the current controller. The

small amount of proportional gain is used to increase the phase at 100 kHz and avoid the

zero-phase crossing of unity gain (see Fig. 6-8,a,b). Finally, Fig. 6-8 also displays the gain

of the fast feedback loop, which is AC-coupled to the current pins of the laser diode. This

feedback loop, shown in Fig. 6-8,c, consists in a flat gain rolled down around 600 kHz,

followed by two phase compensators to oppose the phase retardation at 150 kHz and 1

MHz. The total open-loop gain has a zero-crossing close to 1 MHz. Our design also avoids

gain crossing at 180 phase between the two feedback circuits. The initial instantaneous

laser linewidth (2.7 MHz, FWHM measured over 20 [s) is narrowed by a factor 14 to 200

kHZ (measured from the r.m.s. of the error signal).

The seed laser of the control field (Toptica, DL Pro, 960 nm) is also locked to the

transfer cavity with a PDH technique. A high bandwidth (> 10 MHz) MOSFET, built in

the enclosure of the laser is used to narrow the laser linewidth to 100 kHz from an initial

linewidth ~ 1 MHz. The PDH sidebands are also used to lock the doubling cavity to the

laser with a built-in PDH feedback loop.

To have full independent control of the frequency of the lasers with respect to the

transfer cavity, the probe and control lasers are first sent through an EOM and the first

order sideband are locked to the transfer cavity. By tuning the frequency of the EOMs

(who operate over a range larger than the FSR of the transfer cavity), it is possible to

independently address all possible frequencies without changing the cavity length. The

EOM frequency is generated by a synthesizer (PTS, 3200) controlled by an FPGA. TTL

signals to the FPGA trigger fast frequency jumps of the laser, (typically less than 5 As

for a few MHz), enabled by the rapid switching time of the frequency synthesizer. This

useful feature allows to measure entire transmission spectra during a single repetition of

the experiment, which is convenient for example to align the dipole trap.

Finally, the transfer cavity length needs to be stabilized against slow drifts in temper-

ature and index of refraction. One of the mirror is mounted on a PZT. The first order

sideband used to lock the probe laser to the cavity is mixed with the reference laser locked
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Figure 6-8: Probe laser lock. a,b, Open-loop gain (a) and corresponding phase (b) of
the intermediate (dashed, blue) and fast (full, pink) feedback gain of the PDH laser lock for
the probe laser. The fast loop is AC-coupled to the laser diode, and extends the feedback
up to 1 MHz with the proper phase retardation. The zero-crossing of the intermediate
gain is limited to 100kHz due to the rapid dephasing in the 100 kHz regime. c, Feedback
gain of the high-bandwidth loop. Two capacitors (Cl and C2) AC-couple the signal to the
laser diode (LD) and a surge protection diode (SD). The initial filter (R2,R3,C3) consists
of a proportional gain rolled down at 600 kHz. Two phase compensators are inserted,
operating at 1 MHz (R5, C5) and 150 kHz (RI, C4). d, Pound-Driver-Hall error signal
(yellow) and probe transmission through the transfer cavity (blue). The broadening of
the central slope and the transmission linewidth is due to the active fast feedback-loop.

to the DAVLL spectroscopy. The resulting beatnote is fed via a slow (< 100 Hz) feed-

back loop to the cavity PZT to compensate for long term drifts of the cavity. Note that

this extra feedback loop can broaden the linewidth of the probe and control lasers, who

are tightly locked to the cavity. From EIT fits, after subtraction of the Doppler effect,

we observe a 2-photon linewidth of 250 kHz, in good agreement with the laser linewidth

measured in the absence of feedback on the transfer cavity PZT. Ultrastable cavities

with zero thermal expansion coefficient in vacuum chambers (available from Stable Laser

Systems) are an alternative solution often used in cold Rydberg experiments where very
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narrow linewidth are required, for example for two-photon excitations far detuned from

the intermediate level [183].

6.9 Rydberg EIT level scheme

In this section, we describe experimental techniques to implement Rydberg EIT in the

cold atomic ensemble loaded in the trap. We use a wavemeter (Advantest Q8326) and

the Rydberg levels spectroscopic data detailed in Chapter 5 to initially tune the control

field within ~ 1 GHz from the actual resonance. A more accurate value is measured

by shining the control field in a continuous MOT (in the absence of probe field) and

monitoring the fluorescence. The presence of the control field perturbates the MOT by

removing atoms from the F = 2 -> F' = 3 cycling transition and we observe a decrease

in fluorescence close to resonance for control field intensities equal to a few percent of the

saturation intensity of the excited- to Rydberg-state transition. A typical scan around

the 43D levels of 8 7Rb is shown on Fig. 6-9,a. The - 50MHz broad lines are split in a

double peak structure corresponding to one- and two-photon excitations to the Rydberg

state. The one-photon excitation path is the absorption of a control field photon from the

5P 3 / 2 , F' = 3 level and the two-photon excitation consists in the absorption of a control

field photon and a MOT trapping light photon from the F = 2 ground state. The one-

and two-photon excitations occur for control field frequencies respectively red-detuned

and blue-detuned from the unperturbed resonance, as measured by EIT with a low power

probe. This detuning is caused by the AC Stark shift of the ground and excited states

due to the MOT trapping light.

Our EIT level scheme involves transitions between stretched states, i.e. magnetic

levels with maximal projection of the total angular momentum along the quantization

axis. The level scheme is depicted in Fig. 6-9,b. The o+-polarized probe couples the

15S1/ 2, F = 2, mF = 2) and 15P 3 / 2 , F = 3, mF = 3) states. In accordance with the selection

rules, a control field with circular polarization possibly couples the 15P 3/ 2 , F = 3, mF = 3)

state to the Imj = 3/2 t 1, m, = 3/2) sub-levels of the nS1 / 2 , nD 3/ 2 , nD5 / 2 Rydberg

states, where mj and m, are the projection of the total electronic angular momentum

and nuclear spin. As described in Chapter 5, the hyperfine splitting is not resolved for
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Figure 6-9: Spectroscopy and EIT scheme. a, Rydberg spectroscopy of the 44D
levels. The MOT fluorescence is continuously monitored while the - 480 nm light is
scanned. The exact transitions, measured by EIT, are marked for the 44D 3/ 2 (dashed
blue) and 44D5 /2 (dotted green) levels. b, Level structure, including all states involved
in EIT and optical pumping. The level-shifts in the magnetic field are represented, as
well as the Clebsch-Gordan coefficients on the EIT transition and the Lande factors. For
Rydberg states, the hypefine structure in unresolved, and the levels are described in the
fine structure (J, mj) (see Chapter 5).

Rydberg states and the electronic and nuclear spins are effectively decoupled. Due to the

anisotropy in the presence of stray-electric fields and repulsive character of the dipole-

dipole interaction, we restrict our experiments to the nSj/ 2 states. The o- polarized

control field couples the intermediate excited state to the InS,/ 2 , mj = 1/2, m, = 3/2)

states. This level scheme combines two advantages. First, the control field resonantly

couples to a single Rydberg sub-level, even with imperfect polarization. Secondly, the

dipole matrix elements are maximized for transitions between stretched states, which

yields high OD and increase the control Rabi frequency upper limit. The Clebsch-Gordan

coefficients are given in Fig. 6-9,b, expressed as multiples of the reduced dipole matrix

element (J = 1/2ljer|IJ = 3/2) (see [158, 184] for the relation to the radial integral intro-

duced in Chapter 5).
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After the molasses phase, we proceed to optically pump the atoms from the F = 1

hyperfine state into the (F = 2, mF = 2) magnetic sub-level. The optical pumping is

carried out in the dipole trap and in the presence of a 3.6 Gauss magnetic field along the

optical axis. The magnetic field imposes the quantization axis by lifting the degeneracy

between the magnetic sub-levels and overcomes the mixing between sub-levels due to

stray magnetic fields. A a+-polarized beam counter-propagating with the probe provides

the light for dark state pumping. The beam is collimated between the probe lenses to

achieve homogeneous pumping over the extent of the cloud. The light emanates from

the same DFB laser as the MOT repumper, and is modulated with a fiber-coupled EOM

(EO Space, PM-0K5-20-PFA-PFA-780) tuned close to resonance with the 8 7Rb ground

state hyperfine splitting to generate a superposition of fields resonant with both the

F = 1 -* F' = 2 and F = 2 -+ F' = 2 transitions. We evaluate the quality of the

optical pumping from transmission spectra after the dipole trap turn-off for a+- and

u--polarized probe light, which respectively correspond to the strongest and weakest

Clebsch-Gordan coefficients between F = 2 and F' = 3 magnetic sublevels. The low OD

for the a--polarized probe make its transmission spectrum particularly sensitive to the

quality of the optical pumping. We achieve a pumping purity of 90% of the atoms in the

F = 2, mF = 2 state, as measured from absorption spectra, for a pumping duration of

11 ms, a total optical power of 70pW and a red detuning of the F = 2 -+ F' = 2 of 25

MHz. The red-detuning increase the scattering rate for low mF states in the presence of

the magnetic field and the value of the optimal detuning is linked to the beam intensity.

For a modulated trap, the scattering of the trapping light tends to equally redistribute

the atoms between the different mF states for a linearly polarized trap [79], although

this effect is negligible at the few ms timescale of the experiment, given the dipole trap

scattering rate on the order of a Hz. After optical pumping, we routinely obtain OD -50

in an expanding cloud (averaged over 100 ps) and OD - 25 in a modulated dipole trap

(averaged over 4 ms).
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Chapter 7

Quantum Nonlinear Optics enabled

by Ryberg EIT

7.1 Concept and setup summary

In this Chapter, we report on the realization of an optical medium nonlinear at the level

of individual quanta of light. The medium strongly absorbs photon pairs while remaining

transparent to single photons. The quantum nonlinearity is obtained using Rydberg

electromagnetically induced transparency (EIT) [63]: slowly propagating photons[185, 186,

55] are coherently coupled to strongly interacting atomic Rydberg states[150, 151, 187,

153, 188, 149, 148] in a cold, dense atomic gas. The experimental demonstration of an

extraordinary optical material exhibiting strong two-photon attenuation in combination

with single-photon transmission is the central result of this work. In contrast to successful

approaches based on high-finesse optical cavities to enhance the atom-photon interaction

probability[42, 41, 65, 47, 44, 189], our present method is cavity-free and is based on

mapping photons onto atomic states with strong interactions[62, 190, 61, 63].

The central idea is illustrated in Fig. 7-1, where a quantum probe field incident onto

a cold atomic gas is coupled to high-lying Rydberg levels (see Chapter 5) by means of a

second, stronger laser field (control field). For a single incident probe photon, the control

field induces a transparency window in the otherwise opaque medium via EIT, and the

probe photon travels at much reduced speed in the form of a coupled excitation of light

and matter (Rydberg polariton). However, in stark contrast to conventional EIT[55], if
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Figure 7-1: Interaction between slow photons mediated by Rydberg blockade.
a, b, An elongated ensemble of laser-cooled rubidium atoms is prepared in a crossed
optical-dipole trap. Co-propagating control and probe fields couple the ground-state 1g)
to a high-lying Rydberg state Ir) via a short-lived excited state le). Under EIT conditions,
the probe photons slowly propagate in the medium as Rydberg polaritons. The Rydberg-
Rydberg atom interaction V(r) = C 6/r 6 shifts the Rydberg levels out of resonance and
blocks simultaneous Rydberg excitation if the interaction exceeds half the EIT-associated
linewidth -YEIT/2. As a result, two Rydberg polaritons cannot both propagate when they
are closer than the blockade radius rb = (2C6/YEIT) 1/6 , set by V(rb) = 'YEIT/2-

two probe photons are incident onto the Rydberg EIT medium, the strong interaction

between two Rydberg atoms tunes the EIT transition out of resonance, thereby destroy-

ing the EIT and leading to absorption[191, 192, 190, 62, 61]. The quantum nonlinearity

can be viewed as a photon-photon blockade mechanism that prevents the transmission

of any multi-photon state. It arises from the Rydberg excitation blockade[146], which

precludes the simultaneous excitation of two Rydberg atoms that are separated by less

than a blockade radius rb (see Fig. 7-1). During the optical excitation, an incident sin-

gle photon is converted, under the EIT conditions, into a Rydberg polariton inside the

medium. However, due to the Rydberg blockade, a second polariton cannot travel within

a blockade radius from the first one, and EIT is destroyed. Accordingly if the second pho-

ton approaches the single Rydberg polariton, it will be significantly attenuated, provided
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that rb exceeds the resonant attenuation length of the medium in the absence of EIT,

la= (Koo) 1 , where K is the peak atomic density and oO the absorption cross-section.

This simple physical picture implies that, in the regime where the blockade radius exceeds

the absorption length, rb > 1a, two photons in a tightly focused beam not only cannot

pass through each other[62], and as we show in a detailed theoretical analysis below, can-

not co-propagate simultaneously inside the medium. Using Rydberg states with principal

quantum numbers 46 < n < 100, we can realize blockade radii rb between 3 Am and

13 pm, while for our highest atomic densities of K = 2 x 1012 cm-3 , the attenuation

length la is below 2pim. The optical medium then acts as a quantum nonlinear absorption

filter, converting incident laser light into non-classical light composed of single-photon

pulses. Giant optical nonlinearities using Rydberg EIT[190, 62, 61] have been observed

in a classical, multi-photon regime[63]. Very recently, the Rydberg blockade in a dense,

mesoscopic atomic ensemble has been used to implement a deterministic single-photon

source[155].

To observe the photon-photon blockade, several key requirements must be fulfilled.

First, to eliminate Doppler broadening, the atoms should be cold so that they move by

less than an optical wavelength on the microsecond time scale of the experiment. Second,

the atomic cloud should be sufficiently dense such that the blockade condition rb > la is

fulfilled. Finally, the system should be one-dimensional, i. e. the transverse size of the

probe beam should be smaller than the blockade radius in order to prevent polaritons

from traveling side by side. We fulfill these conditions by trapping a laser-cooled atomic

ensemble and focusing the probe beam to a Gaussian waist wo = 4.5pim < rb.

The experimental setup is detailed in Chapter 6. To summarize, we prepare a laser-

cooled "7Rb ensemble containing up to N = 105 atoms in a far-detuned optical dipole trap,

formed by two orthogonally polarized beams with waists wt = 50pim intersecting at an

angle of 32'. The atoms are optically pumped into the state Ig) = 15S 112 , F = 2, mF = 2)

in the presence of a 3.6 G magnetic field along the quantization axis defined by the

propagation direction of the probe and control beams along the long axis of the cloud.

The probe beam on the Ig) -4 e) = 15P 3/2, F = 3, mF = 3) transition and the control

beam on the le) - Kr) = InSI/2, J = 1, mJ = )transition with waist w, = 12.5pm are

oppositely circularly polarized. To avoid inhomogeneous light-shift broadening of the
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Figure 7-2: Rydberg EIT nonlinearities. a, Transmission spectra versus probe de-
tuning at various incoming photon rates: Ri = lys- , 2ps-1 , 4ps-1, 6ts- 1 (dashed green,
solid red, dotted blue, and dot-dashed black, respectively) for 1100S 1/ 2 ), optical depth
OD = 40, and pulse delay time Td = 340 ns. The system is nonlinear at a power as
low as 0.25 pW. b, Photon-photon correlation function g( 2)(r) at EIT resonance for the
same parameters as in a with Ri = 1.2ps 1 . The top axis shows the separation vg r of
polaritons with vg 200 m/s. The error bars indicate la statistical uncertainty. Spurious
detection events set a lower bound on g(2) of 0.09(3) (red dotted line). Inset shows g(2

)(,T)
for the state |46S 1 / 2 ) with similar parameters. The solid lines are theoretical calculations
as described in the text, with the probe waist fixed at wo = 6 pm. Values g( 2) > 1 are
attributed to classical fluctuations (see Fig. 7-3 and Appendix C).

two-photon transition, we turn off the optical dipole trap before implementing the EIT

scheme. The resonant optical depth of the cloud can be as large as OD = 50, with initial

radial and axial rms cloud dimensions of aj = 10 pim and a, = 36 pm, respectively. The

control light is filtered out from the transmitted light, and the photon-photon correlation

function g( 2)(T) of the probe beam can be measured by means of two photon counters.

7.2 Results

Probe transmission spectra are presented in Fig. 7-2a for large optical depth OD = 40

and the control laser tuned to the Rydberg state I100SI/ 2 ). At very low incident pho-

ton rate Ri _< lIs-1 , the spectrum displays an EIT window with 60% transmission.
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The extraordinary nonlinearity of the Rydberg EIT medium[63] becomes apparent as the

incident photon rate is increased: the probe beam is strongly attenuated already at a

photon flux of Ri ~ 4ps-1 . To demonstrate that we are operating in a quantum nonlinear

regime, we show in Fig. 7-2b the correlation function g(2 ) (T) of the transmitted probe

light, measured at Ri = 1.2 ps-1. For the most strongly interacting state 1100S 1/ 2 ) with

rb = 13pm ~~ 51, ~ 2.9wo we observe strong antibunching with g( 2)(0) = 0.13(2), largely

limited by background light. Spurious detection events (dark counts from the detector,

imperfect polarization of probe light, residual control light) typically limit g2 (7) > 0.1.

Subtraction of the independently measured background coincidence counts yields a cor-

rected g, (0) = 0.04(2). These observations are in stark contrast to EIT transmission via

a weakly interacting Rydberg state 146S1/ 2 ) with rb = 3 pm, where the photon statistics

of the transmitted light are similar to those of the incident coherent state (see inset).

Interestingly, for 1100S 11 2) the photons are anti-bunched over a length scale that exceeds

the blockade radius (see top axis of Fig. 7-2b), indicating the influence of additional

propagation effects beyond the simple picture outlined above.

At large atomic densities, the g(2 ) functions exhibit both a local super-Poissonian

feature on a range of -20 ts and a global positive offset of 0.08 from the expected value 1

at large times (see Fig. 7-3 and Fig. 7-2). We attribute the local feature to the occasional

population of metastable Rydberg levels not resonantly coupled by the control field to

a fast decaying state. This process is relatively rare at the photon flux used in the g(2)

measurements (Ri < 2 ps- 1 ); however when it does occur, the medium becomes absorptive

until the Rydberg atom has moved a distance larger than the blockade radius away from

the probe beam area, or has decayed to a low-lying state. At high incoming probe rate

(Ri 5 ps- 1), it results in a strong attenuation of the transmission over the course of

the experiment (Fig. 7-3 inset). As the probe power increases, the attenuation happens

on a shorter timescale and settles to a lower transmission rate. For Rj=100 ps- 1, the

cloud becomes totally opaque in - 1 ps. If the control field is turned off for a moment,

the transmission progressively returns to its initial value in 20 /us. The decay shows no

dependence on static electric fields up to 10 V/cm- 1 , ruling out the presence of ions in the

cloud. Black-body radiation is a possible source of excitation for atoms from the Rydberg

state jr) to neighboring levels. For measurements at large rate, we restrict ourselves to
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Figure 7-3: Super-Poissonian features of the intensity correlation function. In-
tensity correlation function g(2)(T) up to T=80 pus for |r)=100S 1 2 . Outside the anti-
bunching window, the light is super-Poissonian. We attribute this to the excitation of
Rydberg atoms in the medium and, for very large w, experimental drifts (see text). Inset:
Transmission at high incoming probe photon rate (Ri 14 pis 1 ). It exhibits a decay
of the transparency over the measurement time (not noticeable at low photon rate Ri <
2 pus-1), which is potentially a signature of the permanent blockade of the medium by a
small Rydberg population.

the initial part of the signal shown in Fig. 7-3 inset. The global g(2 )(c'o)=1.08 feature
is attributed to slow drifts and classical fluctuations in our system. These include OD
fluctuations, frequency drifts of the spectroscopic reference for the transfer cavity lock
and alterations of the alignment, resulting in slow variations of the observed transmission
on the order of 20%.

In principle, we can compensate for the offset by modeling both mechanisms - the

temporary local Rydberg blockades and the slow drift - as inhomogeneous fluctuations,
and assume in general that, with probability pi, the linear transmission of the medium

changes to T2. For an incoming photon rate Ri, the mean count rate at the output is

Ro= >E piis Under the assumption that the change in the transmission does not
affect the dynamics of the photon-photon interaction, provided that both photons are
eventually transmitted, the coincident count rate for photons separated by a small time
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Figure 7-4: Evolution of the correlation function with OD. Measured g(2 )(T) (col-
ored dots) for Ir)=1Sl/ 2 and 'YEIT = 22 MHz for different OD. The colored curves
are visual guidelines. At low OD, the offset (attributed to the spontaneous population of
neighboring Rydberg states and the depth are reduced because the increase in attenuation
length weakens the blockade mechanism.

interval T is R, = E piTR2g 2 (T) where g2 (T) is the expected correlation function. The

measured correlation function Rc(r)/R2 is thus equal to the expected correlation function

multiplied by a factor > piT7/(Z pTi)2 > 1, which correspond to the value of the offset

at large T (this normalization of the correlation function by its offset value is used in

Chapter 8).

7.3 Scaling with OD

Two important features of the photon-photon blockade are the degree of two-photon sup-

pression at equal times, g(2 )(0), and the associated correlation time, i.e., the half-width

Tc of the antibunching feature in g(2) (T). We study their dependance on the atomic den-

sity interaction dynamics for different optical depth using the following procedure: as the

dipole trap is turned off, the mainly radial expansion of the elongated cloud continuously

reduces the atomic density, allowing measurements of g(2)(T) at different OD (see Figure

7-4). Each curve is averaged over a 100 ps period in the cloud expansion, and we inde-

pendently measure the average OD over this period. The attenuation length ranges from
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Figure 7-5: Dependence of the correlation function on EIT parameters. a,
b, Equal-time photon-photon correlation g( 2 )(0) as a function of OD for 177S1 /2 ) (a) and

1100S 11 2 ) (b), for a set of EIT widths (7IT, IEIT' IT EIT = (20,27,16,26) MHz. Solid
lines are numerical solutions for a probe beam waist wo = 6pm including detection noise
(dotted lines). c, d, Width Tc of the anti-bunching feature in g(2) (r) as a function of optical
depth (c) and EIT bandwidth (d) B = -YEIT/v/80D, respectively. The black dashed line
is 1.05/B and derives from an analytical solution of Equation (7.1) (see Appendix C).
The error bars indicate lo, statistical uncertainty.

2.3 pm (for OD = 40) to 19 pm (for OD = 6). The evolution of the correlation function

with the atomic density is visualized in Fig. 7-4. The solid curves in the figure are fits to

the experimental data, with the fit parameters being the depth at T = 0, the width of the

anti-bunching feature, the constant offset value at large T, and the slope (or "sharpness")

at T = 0.

The summarized equal-time photon-photon correlation function g( 2)(0) and the width

r, of the anti-bunching feature are plotted in Fig. 7-5. The blockade mechanism is most

effective if the optical depth per blockade radius ODb = rb/la exceeds unity[62], and if the

system is effectively one-dimensional, rb > wO. Since the blockade radius[146 increases
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with the principal quantum number n as rb oc n11/ 6 , the combination of both effects results

in a steep dependence of g(2 )(0) upon n. A lower limit on the correlation time Tc is set

by the photon travel time rb/vg (~ 50 ns for OD - 40) through one blockade radius at

the group velocity vg an upper limit is set by the Rydberg decoherence rate, which for

our system is dominated by Doppler broadening and laser linewidths, and amounts to

1 = 500 ns.

Figures 7-5a,b show that g( 2 ) (0) improves with principal quantum number n of the

Rydberg state and interaction strength rb/la, resulting in a more than tenfold suppression

of the two-photon transmission, limited by independently measured background light on

the photon detector (dotted lines). At the same time, the observed width -r of the g(2 )

feature considerably exceeds the photon travel time rb/v9 through the blockade radius

(Figure 7-5c, d). Close examination (Fig. 7-5d) reveals that the correlation time is of the

same order and scales proportionally with the inverse bandwidth of the EIT transparency

window B OC -EIT/ OD, where YEIT =Q c/, Q, is the Rabi frequency of the control

field and F is the decay rate constant of the state le). This observation suggests that

propagation effects play an important role in establishing the g(2) correlation time Te

in a medium of large optical depth. Remarkably, we observe that, under appropriate

conditions, two photon-events are suppressed inside the medium on a length scale that

approaches the size o, ~ 40 pm of the entire atomic ensemble, and on a time scale that

approaches the intrinsic coherence time -y.

For direct comparisons with our experiments, we numerically solve the full set of

propagation equations accounting for the Gaussian density profile of the trapped atomic

cloud, the finite waist of the probe beam, and the linear photon absorption due to finite

decoherence -y of the two-photon transition (see Appendix C). As shown in Figures 7-2 and

7-5, the theory captures the essential features of our measured correlation functions and,

moreover, reproduces their dependence on the Rydberg states, control laser intensities

and optical depths of the sample over a wide range of parameters.
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Figure 7-6: Diffusion of the photon blockade. a, b, Numerical simulations showing
the spatial evolution of the probability distribution associated with two photons (a) and
two Rydberg excitations (b) at positions (zi,z2 ) inside the medium, normalized by their
values in the absence of blockade. Two Rydberg excitations are excluded from the block-
aded range, resulting in the formation of an anti-bunching feature in the light field whose
width increases during the propagation due to the finite EIT transmission bandwidth.

7.4 Two-photon interactions

To gain insights into these observations, we theoretically analyze the photon propagation

dynamics in the weak-probe limit where the average number of photons inside the medium

is much less than one. In this case, it suffices to consider two polaritons (Fig. 7-1b). The

corresponding field component can be described[62] by the two-photon wavefunction

102(t)) = I f dridr2EE(ri, r 2 , t)$ t(ri)$ t(r 2 )I0), where $(r) denotes the photon field oper-

ator and IEE(ri, r 2 , t)12 is the probability of finding two photons at locations rl, r 2 . This

probability directly yields the spatially dependent photon-photon correlation function,

and, via the group velocity vg, the corresponding temporal correlation function g(2) (T).

An intuitive picture emerges if we make the simplifications of a tightly focused probe

beam (ID approximation) traveling through a homogeneous medium with perfect linear

EIT transmission. In this case, the steady-state two-photon wavefunction in the medium

obeys (see Appendix C):

8REE(zi, Z2) = W EE(zi, Z2)+ 41, 1 + V(r) Q a EE(zi, z 2 ), (7.1)
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where R = (zi + z2 )/2, r = Z1 - z 2 are the center-of-mass and relative coordinates of

the two photons, respectively. The function V(r) = r - 2ir) can be regarded as

an effective potential that describes the impact of Rydberg-Rydberg interactions[62]. For

large photon-photon distances, r > rb, the potential V vanishes, and equation (7.1) yields

perfect transmission under EIT, while for distances r < rb, the interaction V modifies the

two-photon propagation. According to equation (7.1), photon correlations emerge from

a combination of two processes as visualized in Fig. 7-6: The first term acts inside the

blockade radius rb and describes absorption with a coefficient la as the interaction V

tunes EIT out of resonance. This would create a sharp dip in the two-photon correlation

function with a corresponding correlation time Tb = Tb/Vg. However, if the corresponding

spectral width ~ T- 1 is too large, the second diffusion-like term acts to broaden the

absorption dip (Fig. 7-6,a) to a width determined by the EIT bandwidth - (YEIT/ OD),

in agreement with experimental results (Fig. 7-6,b). To maintain strong two-photon

suppression in the presence of diffusion, the loss term must exceed the diffusion on the

length scale of the blockade radius, requiring rb > la. Large optical depth ODb = rb/la

of the blockaded region is therefore the key experimental feature that allows us to extend

earlier studies[63] into the quantum nonlinear regime.

7.5 Many-photon dynamics

To investigate the transmission characteristics of multiple photons through the medium,

we plot in Fig. 7-7a the output photon rate R0, scaled by the transmission measured at

low probe power, as a function of incident photon rate Ri. At first, R, increases linearly

with Ri as expected, but then saturates abruptly to a constant value of R" = 1.3(3)ps~ 1.

Note that these observations deviate from the simplistic model of a multiphoton absorber

that transmits only the one-photon component from the incoming coherent state (black

dashed line). At the same time, the observed output flux corresponds to less than one

photon per group delay Tg = 300 ns in the medium. Figure 7-7b shows the saturated

output rate versus the ratio rb/wo of blockade radius and probe beam waist for a wide

range of principal quantum numbers, control field intensities, and optical depths. The

approximate R, oc (wo/rb)2 scaling indicates that the saturated rate for intermediate to
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Figure 7-7: Saturation behavior of the transmission. a, Outgoing versus incoming
photon rate for 1100S 1/ 2 ), 7}EIT = 27r x 15 MHz, OD = 26. All output rates are scaled
by the transmission of 50% at low photon rate due to linear absorption. The dashed
black curve outlines the expected rate if all multi-photon events within the anti-bunching
time (-r=160 ns) are fully blocked, while the green dashed curve assumes that all mul-
tiphoton states are converted into an outgoing one-photon state, assuming Tr = 800 ns.
b, Saturated rate of outgoing photons RTre per anti-bunching correlation time TF, scaled
by the linear absorption, as a function of the ratio between the blockade radius rb and
the probe beam waist wo. The Rydberg states are 1100S 11 2) (blue, wo = 4.5pm, ODb ~
8; pink, wo = 4.5pm, ODb ~ 4), 177S 1 /2 ) (black, wo = 4.5[pm, ODb ~ 3 ), 146S1/ 2 )
(green,wo = 4.5pum, ODb ~ 0.7; red, wo = 7pm, ODb ~ 0.7). The ranges for the EIT
widths are: (YoITYEITr,7hIT,7EIT) 2irx (6-16,18-26,29-36,50) MHz. In the data plot-

ted, the estimated T, varies from 60 to 330 ns. The dashed line corresponds to 0.9(rb/wo) 2 ,
indicating the expected scaling with transverse confinement.

strong interactions, rb 1 'a, is largely determined by the transverse geometrical constraint,

i. e. by the extent to which the Rydberg polaritons can propagate side by side. A more

detailed analysis of the outgoing light in the presence of many-body interactions on the

outcoming light has recently been carried out in [159].

7.6 Outlook

Our observations open intriguing prospects for ultimate quantum control of light quanta.

At the same time, by using strong interactions in the dispersive regime, explored in
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Chapter 8, the present approach can be used to implement deterministic quantum logic

gates[190, 62], which would constitute a major advance towards all-optical quantum in-

formation processing[193]. Finally, our results may open the door for exploring quantum

dynamics of strongly interacting photonic many-body systems. For example, it may be

possible to create a crystalline state of strongly interacting polaritons[29].
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Chapter 8

Attractive Photons in a Quantum

Nonlinear Medium

8.1 Rydberg EIT in the dispersive regime

In Chapter 7, we demonstrated that Rydberg Electromagnetically Induced Transparency

(EIT) in dense atomic cloud leads to strong dissipative interactions at the single photon

level. In this chapter, we report on related experiments in the dispersive regime, where

the photons coherently interact by imprinting on each other a mutual phase-shift. The

passage from the dispersive to dissipative regime is obtained by introducing an interme-

diate detuning A of the control field from the short-lived intermediate state of the EIT

level scheme. By operating away from the intermediate atomic resonance, the atomic

absorption is low and only weakly nonlinear, as the transmission difference between the

EIT in the 3-level atoms ensembles differs little from that of the same medium in the

absence of control field, which corresponds to the idealized limit of the Rydberg blockade.

In contrast, the index of refraction of the medium is largely modified by the presence on

the control field. On two-photon resonance, the presence of the control field decouples the

probe field from the atoms, which are rotated into a dark state. As a consequence, the

probe experiences an index of refraction of unity and no phase-shift compared to a beam

propagating in vacuum (see Appendix A). Similarly to the resonant case, the large change

in index of refraction is still responsible for a large reduced group velocity. In the absence

of control field, an off-resonant phase-shift 5 ~ ODF/(4A) is imprinted on the phase of
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Figure 8-1: Rydberg EIT in the dispersive regime. A weak laser beam near the
transition Ig) -+ le) at 780 nm is sent into a cold rubidium gas driven by a control laser
near the transition le) -+ Ir) at 479 nm. Transmission spectra (top) and phase shift
(bottom) for the probe photons with incoming rate of Ri = 0.5 ps- 1 (blue squares) and
Ri = 5 ps 1 (green circles), for a control field red-detuned by A = 15 MHz (blue line
is theory). The spectrum at high probe rate approaches that of the undriven two-level
system, which is the idealized limit of a blockaded cloud (dashed gray). The solid vertical

line corresponds to the EIT resonance.

the probe field by the atomic medium (where F is the lifetime of the intermediate state).

In contrast to the dissipative interactions described in the previous chapter and several

theoretical and experimental studies [63, 161, 155, 157], the Rydberg blockade primarily

impacts the real part of the linear susceptibility of the medium [64, 62] and establishes

coherent interactions between probe photons.

More quantitatively, the repulsive Van-der-Waals interaction between two Rydberg

atoms V(r) = hC6/r 6 tunes the doubly excited Rydberg state far off EIT resonance for

distances frl < rB, where TB = 6 C6/'}EIT is the Rydberg blockade radius[62, 61, 152], C6

the van der Waals coefficient, "YEIT = Q|/14AI is the EIT linewidth at detuning |AI > F,

and Q, the Rabi frequency of the control field. While for photons with large separation

in the medium Irl > rB, the phase shift originating from the Ig) -+ le) probe transition

is suppressed by EIT, for small photon separations Ir < rB, the light experiences a

phase shift originating from the index of refraction associated with the bare two-level
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probe transition (see Fig. 8-1). This explicit dependence of the refractive index upon

photon-photon separation can be modeled in one dimension as a potential well with a

characteristic width of 2 rB. Qualitatively, a substantial two-photon phase shift arises for

1 7 '> 1, where la is the resonant attenuation length in the medium, i.e. for sufficiently

high atomic density. Furthermore, the probe field must also be transversally compressed

to a waist size wo < rB to ensure interactions. For our parameters using the Rydberg

state 100S 11 2 and Q, = 10 MHz, we have rB ~18 pm at detunings of a few F, la = 4pm

at the peak density, and wo = 4.5 pm, fulfilling the conditions for strong interactions for

JAI < 51.

Our experiment makes use of an ultracold rubidium gas loaded into a dipole trap, as

described previously in Chapter 6. The dipole trap is periodically switched off with a

5.5 ps half-period, and the measurements are performed during the dark time to avoid

inhomogeneous broadening. Photons detected in the first 1.5 ps after the turn-off of the

dipole trap are not included in the analysis, to guarantee steady-state EIT. For each

experimental cycle, data is accumulated over 400 periods of the dipole-trap modulation.

The trapped atomic cloud has a longitudinal r.m.s. length of o-_ = 36 Pm and a peak

density of K = 1012 atoms cm-3. The average resonant optical depth is 22, with less than

20% variation over the measurement time. The probe and control beams are counter-

propagating in order to reduce the residual Doppler broadening to 50 kHz. Linearly

polarized probe laser light enters the medium at an average photon rate of 1.6 ps-1 . Here,

we are interested in the .+-polarized component of the probe light, coupling the ground

state Ig) (5S 1/ 2, F = 2, mF = 2) to the Rydberg state Ir) (100S 11 2 , J = 1/2, mj = 1/2) via

the intermediate state le) (5P3/ 2, F = 3, mF = 3) of linewidth F = 6.1 MHz by means of a

control field that is detuned by A below the resonance frequency of the upper transition

je) -> Ir). Figure 8-1 shows the transmission and phase-shift spectra of the a+-polarized

probe field at different probe incoming rates and in the absence of control field, which

corresponds to the idealized limit of a fully blockaded medium. For a very weak probe

field with mean incident photon rate Ri = 0.5 ps 1 , the EIT is established when the

probe detuning matches that of the control field. This corresponds to a phase-shift of 0

and a transmission of ~0.5. Note that the peak transmission is shifted to smaller probe

detuning with respect to the two-photon resonance, due to the finite decoherence rate
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between le) and Ir). As we can observe, the Rydberg medium is extremely nonlinear:

a probe photon rate of Ri = 5 ps- already modifies the medium due to the Rydberg

blockade [146], yielding a probe spectrum close to the bare two-level response. In most of

the work described below, we perform our experiments on two-photon resonance, where

the transmission is independent of the probe photon rate, yielding a purely dispersive

nonlinearity. The linear dispersion at this point corresponds to a reduced probe group

velocity of typically vg = 400 m/s.

8.2 Conditional phase-shift measurement

The phase of the a+-polarized probe field presented in Fig. 8-1 is measured by inter-

ference with photons which interact only weakly with the atomic medium. More pre-

cisely, we prepare input photons in a linearly polarized state IV) = (Jul) + o-)) /v/2,

where the a- component serves as a phase reference. The full level-structure is pre-

cisely described in Fig. 8-2. The atoms are initially pumped into the ground state

I g) = 15S 112 , F = 2, mF = 2) magnetic sublevel. The a+ and a- components of the incom-

ing linearly polarized probe light respectively couple to the le) = 15P 3/2 , F = 3, mF = 3)

and le') = 15P 3/ 2 , F = 3, mF = 1) excited states. For our magnetic field, the Zeeman

splitting between these levels is 6 MHz, comparable to their inverse lifetime F = 6.1 MHz.

The coupling dipole matrix element for the a+ transition is larger than for the a- transi-

tion by a factor of v/15. The a- polarized control field couples the stretched state le) to

the Rydberg state with maximal projections of the nucleus spin (m) and total electronic

angular momentum (mi), |r) = I100S 1 12 , MI= 3/2, mj = 1/2). In addition, it couples

|e') to Ir') = I100S1/ 2 , mI = -1/2,mj = 1/2) and Ir") = I100S1/ 2 , mI = 1/2, mi = -- 1/2)

with a V/'5-times weaker resonant Rabi frequency. Because the magnetic dipole moment

of the nuclear spin is negligible compared to that of the electron, the energies of the levels

Ir) and Ir') are equally shifted by the magnetic field. As a consequence, both a+ and

a- photons propagate under Rydberg EIT conditions. Nevertheless, the combined effect

of the Zeeman shift of the intermediate level and the reduced dipole coupling Ig) --+ le')

suppresses the probability for a- photons to create or be affected by Rydberg blockade.

As the a- probe photons interact only negligibly between themselves and weakly with
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Figure 8-2: Interferometric measurement of conditional phase-shifts. a, A
linearly polarized weak laser beam near the transition Ig) -- > le) at 780 nm is sent

into a cold rubidium gas driven by a control laser near the transition |e) -+ Ir) at

479 nm. Strong nonlinear interactions between a+-polarized photons are detected via
photon-photon correlation functions of the transmitted light for a set of different polar-

ization bases, as determined by a quarter-waveplate (QWP), a half-waveplate (HWP),
and a polarizing beam-splitter (PBS). Here a- photons serve as a phase reference. b,
Schematic representation of the atomic transitions. The levels are |e) = (5P 3 / 2 , F =
3 , mF = 3), le') = 15P 3 /2 , F = 3,mF 1), r) = 1100S 12 , mI = 3/2, mj= 1/2), Ir') =

I100SI12 , mI = -1/2, mj = 1/2), Ir") 10OS 1/2 , mI = 1/2, mj = -1/2). c, Transmis-
sion (top) of the a+ polarization in the absence of control field (o, gray dashed line)

and of the a+ (0, blue line) and o- (o, red line) with a control field red-detuned by
A = 14 MHz. The phase shift between the two circular polarizations (bottom) exhibits a

difference of ~ 7r ~ ODF/(4A) at EIT resonance (solid vertical line).

cr+ photons, they provide a reliable reference for measuring phase shifts of the a+ pho-

tons. Phase-shift and absorption of the a+ component result in polarization rotation and

ellipticity of the probe field at the output of the medium. The outgoing polarization can

be measured by Stokes analysis. For that purpose, a quarter waveplate, a half waveplate

and a polarizing beamsplitter are inserted between the output of the vacuum chamber
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and the single-photon detectors (see Fig. 8-2). By measuring the light in each arm of the

polarizing beam splitter in three definite basis, we reconstruct the differential phase-shift

between the a- and a- components.

In addition to the angle and the ellipticity, the Stoke analysis yields the degree of

polarization of the light. Interestingly, we observe that this degree is 1 for the entire

spectra apart from a narrow window centered on two-photon resonance and of width - 1

MHz, for which the degree of polarization decreases to 0.5. We attribute the cause of this

observation to the group velocity difference between the a+- and a--polarized photons.

When the group delay difference (measured to be 300 ns) is not negligible compared to

the the laser coherence time, the interference between the a+- and ---polarized photons

is reduced and the polarization fluctuates randomly. Our laser linewidth is on the order

of 200 kHz.

For a dense enough medium, the Rydberg blockade in the dispersive regime induces

large conditional phase-shifts [46]. The mutual phase-shift between two interacting pho-

tons strongly modifies the propagation properties of photon pairs with respect to that of

single photons. In order to explore these quantum dynamics, we perform a conditional

polarization measurement dependent on the time interval between detection events. It

consists in measuring the two-photon correlation functions g(2 of the transmitted light

in different basis a, 3. To clarify our approach, we first assume that the system is free of

decoherence. In that case, the outgoing one-photon state, detected at time t, is a pure

state:

|1)t = (,q+la+)t + n_ja-)t) /v'2. (8.1)

Here, 77 and q- characterize the linear susceptibility of the medium, accounting for

absorption and phase shift leading to polarization rotation. For two photons arriving at

times t1 and t 2 on two single-photon detectors, the corresponding (unnormalized) outgoing

state is:

11, 1)th,t = 1 [T12 (t1, t2) 1+ 0)tl,t 2 + ?7+7- X(ti, t2 ) (1o, + )t1 ,t2 + o-U+)ti,t 2) (8.2)
2 2

+ed P(t , t2)ad 1  )ti,t2wi

The photon-photon interactions are described by O(ti, t2), X(ti, t2) , and P(ti, t2), which

162



are chosen to be unity in the absence of nonlinear response. Here, the main quantity

of interest characterizing the a+-photons interaction are the phase an amplitude of the

two-photon temporal wavefunction O(ti, t 2 ). The squared amplitude of 'ti,t 2 is equal to

the normalized second-order correlation function of a+ photons.

14(ti, t2)12 = g(2 ) (t 1 , t 2 ) (8.3)

After independent measurements of the linear transmission y+ and the amplitude of 4,
the phase arg (Ot 1 ,4 2 ) can be extracted by additional measurements of the two-photon

correlation functions in different polarization bases . For example, assuming no interac-

tions between the medium and u--polarized photons, (T_ = X(ti, t 2 ) = P(ti, t 2 ) = 1), the

correlation function for outgoing photons with the initial polarization is:

(2) q +4+27++'(t1 , t 2 ) 2
g v(ti, t2) = (I± 7)2 (8.4)

In the presence of decoherence, the outgoing state of the photons must be described by

density matrices, with p(1)(t) replacing I1)t(l|t, and p(ti,t 2 ) replacing Il, 1)tt 2 (1, ltit 2 -

It is convenient to define the scaled matrix

pAj (ti, t2) = Pj(lit)(8.5)
[p(i) (ti) (9 p(1) (t2)]i,j

in the basis { fc 4)I u+o-) , joijc4), ai-a2)}. By definition, all elements of & are equal

to 1 in the absence of nonlinearity. For a pure state, arg [f++,-- (t 1, t 2 )] = arg(V't,,t 214 1 4 2)

is the nonlinear phase-shift of a +,+ photon-pair with respect to that of the weakly

interacting a-o- pair.

The density matrices for the one-photon and two-photon states are measured by quan-

tum state tomography via a maximum-likelihood estimation[195]. We numerically opti-

mize a Hermitian, positive semidefinite, two-photon density-matrix,

P++,++ P++,s P++,-- 0

_ PS,++ Ps,s PS,-- 0 (8.6)
P--,++ P--,s P--,-- 0

0 0 0 PA,A

163



T X R

q = w/4
h = 7r/4 1" "--

0.5

q 0R
h =

q =/8

h = 7/16 05

q = /8

h = 7r1

0.5
h =0 0.5 IZ

0 T(PS) 0.6-0.6 T (s) 0. 6 0 T(Ps) 0.6

Figure 8-3: Normalized photon-photon correlation functions in 6 polarization
bases (for A = 1.51?). a, Each setting of the quarter wave-plate (QWP) at an angle q
and the half wave-plate (HWP) at an angle h (angles specified on the left) followed by
a polarizing beam splitter determines a polarization basis for three g( (T) measurements
(blue points): for two transmitted photons (T), for two reflected photons (R), and for
one-transmitted-one-reflected (X). The bases are equivalent to those proposed in Ref.
[194]. The 18 pair counts from 6 different bases are used to tomographically reconstruct
the two-photon density matrix using the maximum-likelihood estimation. Together with
the reconstructed one-photon density matrix (obtained from the single counts), one can
calculate the reconstructed g, (T) (red line).

in the two-qubit basis {f 1 2) ,IS) ,alu-j ) ,A)}, where S/A)

Since the two photons share the same frequency and spatial mode, there is no coherence

between the 3 x 3 symmetric and 1 x 1 anti-symmetric subspaces[194]. The photons have

different temporal modes and are distinguishable by their arrival time. Nevertheless, be-

cause the interaction between the a+ and u--polarized photons is negligible, the 10'+0-)

component of the outgoing state is entirely in the symmetric subspace. We verified that
all the measured g (tit 2 ) are symmetric with respect to T = - t2 , within our detection

noise.

To set the 10 degrees of freedom in p(ti, t 2 ), we measure g(2) in six required polarization

bases {q, h} = {I, '}, {0, 0}, {, 1}, {0, } {f, -}, {i, 0}, where q, respectively h, is
the angle of the quarter-waveplate, respectively half-waveplate, using four single photon
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Figure 8-4: Tomographic reconstruction of the scaled density matrix 5. Ampli-
tude (a,b) and phase (c,d) of the scaled two-photon density matrix p ,,(-r) = pij (T)/[pu)&

p ()]jj for two photons with time separation T = 0 (a,c) and r = 1 ps (b,d) at a detuning
of A = 2.31'. All pbj(1 ps) = 1, as expected in the absence of nonlinearity. The bunching
is evident by ++,++ > 1 (a), while the nonlinear (conditional) phase shift is given by
arg (u++,--) = -7r/4 (b).

counters ( see Fig. 8-3). The optimization follows the Maximum Likelihood Estimate[195],

where all coincidence measurements are considered. The one-photon density matrix pO)(t)

is reconstructed using the same technique using the average transmission rates instead of

the coincidence counts. Note that the correlation counts are rescaled to compensate for

the offset at large T (see discussion in chapter 7).

Figure 8-3 also presents a comparison between g,('r) curves measured in different

polarization bases and those calculated from the reconstructed density matrices after

maximum-likelihood estimation. The resulting scaled density matrices are plotted in

Fig. 8-4 in the limits of proximal (ti = t 2 ) and distant (non-interacting) Iti - t2l = 1 Ps

photons. As expected, at large time separation, the elements of the scaled matrix are all

equal to unity. For photons exiting the medium simultaneously, we observe the existence

of a large conditional phase-shift between lI+u+) and 1o--). The small phase emerg-

ing between the 10c+u-) and la-u) components underlines that photons with opposite

polarizations interact very weakly.

8.3 Results

The component g) directly gives the probability density of the u+-polarized interacting

photon pairs. Figure 8-5 shows g+[ for a control detuning A = 14 MHz as a function of
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Figure 8-5: Conditional phase-shift and photon bunching. Measured second-order
correlation function (a) and nonlinear phase shift (b) of interacting photon pairs at
A = 2.317. The photons are detected at times t1 and t2 . (c) Second-order correlation
function displayed as a function of the time difference Ir = Itl - t2 between the photons,
showing the transition from anti-bunching on resonance (A = 0, green) to bunching at
large detuning (A = 2.31?, blue). Points are experimental data, lines are full numerical
simulations. All g(2 measurements are rescaled by their value at T> 1.5 ps (See Chapter
7). (d) Nonlinear phase-shift versus I for two different detunings (A = 1.517, purple,
and A = 2.317, blue). The lu error is ±30 mrad, dominated by photon shot noise.

the time separation r= ti - t 2 between the photons detected at times t1 , t 2 , converted

into a relative distance in the medium via the group velocity vg. A prominent feature

is the cusp at r = vgr = 0, which is characteristic of a predicted two-photon bound

state[34, 196], as discussed below.

The probability density of two interacting o+ photons, g(2(ti, t 2 ), and the nonlinear

phase, acquired by the a++ pair relative to a non-interacting o-- pair, < = arg [++,--,
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are shown in Figs. 8-5a,b for A = 14 MHz. Clearly visible is the bunching of photons, i. e.

an increased probability for photons to exit the medium simultaneously (ti ~ t 2 ), and

a substantial nonlinear two-photon phase shift of -0.5 rad in that region. Here t1 and

t2 belong to the central region of the 5 p-ts pulse, where the experiments is steady state.

In that regime, the correlation function only depends on the detection time difference

T = t2- ti and can be averaged along the diagonal lines. Figure 8-5,c shows the intensity

correlation in the dissipation-dominated antibunching regime (see Chapter 7) at A = 0

and in the dispersive regime at JAI > F and Fig. 8-5,d displays the nonlinear phase for

two different detunings. The central result of this work is the large nonlinear Kerr phase-

shift > 7r/4 at the single photon level for a medium with a large linear transmission of

order 50%. The linear transmission is technically limited by the ground- to Rydberg-

state decoherence, which arises from the probe and control field linewidth and the finite

temperature of the atoms. This record conditional phase-shift outside the context of cavity

QED is accompanied by the emergence of a visible bunching feature in the probability

density of the two-photon wavefunction.

The transition from the dissipative to the dispersive regime with increasing JAI is

summarized in Figs. 8-6,a,b. In the dispersive regime, the nonlinear phase shift #(T = 0)

can reach (-0.32 ± 0.02)7r, at a detuning A = 9 MHz. Note that it is experimentally

easier to access the amplitude of the wavefunction 4(ti, t 2), which only requires the mea-

surement of the correlation function g (ti, t 2 ) than to measure the phase q(ti, t2) which

we extract from the full tomographic process. As expected from the refractive index dis-

crepancy between the 2-level and 3-level atomic ensemble, the blockade generates a large

condition phase shift at JAl > IF, which is ultimately limited by the absorption length la

of the medium and the total optical depth OD. The absolute value of the nonlinear phase

1#1 exhibits asymmetries under a sign change of the detuning A from the intermediate

atomic le) state. In particular, at negative values of A, corresponding to a blue-detuning

of the control field, the phase-shift is strongly reduced and deviates from the predicted

results given by our full theoretical simulations, plotted in blue. In theses simulations,

we numerically solve the set of propagation equations for the light field and atomic co-

herences. The model incorporates the longitudinal atomic-density distribution and the

decoherence of the Rydberg state (see Appendix D). In principle, the symmetry between
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Figure 8-6: Transition between the dissipative and dispersive regimes. Equal-
time two-photon correlation g+(0) (a) and nonlinear phase 0(0) (b) versus detuning A
from the intermediate state le). Blue lines are full theoretical simulations, while black
lines are the result of the Schrodinger-equation approximation, assuming a simplified
delta-function potential. Vertical error bars represent l- and horizontal error bars are
+0.5 MHz.

positive and negative A is broken by the repulsive dipole interaction of the 100S 11 2 states.

For negative A, a positive energy shift of the Rydberg level of order Q2/ Al tunes the

two-photon Raman absorption dip in resonance with the probe field satisfying the two-

photon resonance condition for unperturbed levels. On the contrary, for A > 0, positive

energy shifts of the Rydberg level detunes the two-photon absorption dip further away

from the two-photon resonance. For negative A, this asymmetry introduces a dissipative

interaction between photons at a distance equating the Van der Waals interaction and

the control field Stark-shift, which is absent from the regime A > 0.

8.4 Two-photon bound state.

We now turn to the explanation of the bunching feature, depicted in Figs. 8-5,c, 8-6,a. The

propagation of cr-polarized photon pairs in such a medium can be understood by first

considering an idealized situation with no decoherence between the Rydberg state and
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the ground state. Then the steady-state in a one-dimensional homogenous medium can

be described by a two-photon wavefunction '(z 1 , z2 ), whose evolution is approximately

governed by a simple equation (see Appendix D) in the center-of-mass R = (zl + z2)/2

and relative r = z1- z2 coordinates:

2A c 2- V(r)OO= 41a + i]& + _>a, o. (8.7)

Here the effective potential:

V(r) = [i + 2  (1 + 2r'/r)]-1  (8.8)

approaches (i + 2A/F)- 1 inside the blockaded volume (Irl < TB), and zero outside. The

solution relates to the temporal wavefunction 0(r) defined in the previous section and to

our measurements in time domain via:

(R = L, r = vg'r) ~ (T) = g(-(0)e4 (8.9)

This approximation only holds for small ITI as discussed in Appendix D. Far off

resonance (IAI > F, Qc), Eq.8.7 corresponds to a Schroedinger equation with the center-

of-mass propagation distance R playing the role of effective time. The photons' effective

mass m oc -F/(16laA) can be positive or negative depending on the sign of the detuning

A. The sign of the potential also changes with A and the potential is a well for A < 0

and a barrier for A > 0. Nevertheless, because the boundary condition ?(R = 0, r) = 1

is unchanged under complex conjugation -* 0*, the dynamics for positive A also

correspond to a particle with positive mass in a potential well, as immediately derived

by taking the complex conjugate of the Schroedinger equation, leading to an effective

attractive force in both cases and opposite nonlinear phase-shifts. As mentioned earlier,

the potential for A < 0 also exhibits additional features near the edges of the well,

corresponding to a Raman resonance 1g) -- |r) for the interaction-shifted Rydberg state

at some interatomic distance near Ir|= TB and these features are likely responsible for the

deviation from (anti-)symmetry under the change of the sign of A displayed in Fig. 8-6.

In the experimentally relevant regime, the effective potential supports only one bound-
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Figure 8-7: Two-photon bound state evolution. a, Photon bunching and two-
photon bound state. Theoretically predicted photon-photon correlation function in the
Schroedinger-equation approximation (top, blue line) for A = 14 MHz, with a potential
well of width 2 rB (bottom, green line). The bound state (bottom, red) and the superpo-
sition of scattering states (bottom, black) form the initial wave function V) = 1 (bottom,
dashed blue). The two-photon bound state results in the observed bunching in the corre-
lation function g( _ ~ 2 (top, gray circles), where time has been converted into distance
via the group velocity vg. The boundary effects resulting from the finite extent of the
atom cloud become important for Irl > 5 rB. b,c, Detailed visualization of the solution
4'(R, r) to the Schroedinger Eq. 8.7 at the beginning (R = 0) and at the end (R = L) of
the medium for A = 2.31' and rB = 0.15L. 0 is a superposition of the unique bound eigen-
state of the system (thick red) and a set scattering eigenstates (thick blue). For clearer
visualization, the real and imaginary part of the bound (red) and scattering (blue) states,
as well as the total wavefunction (dashed purple), are projected on the back and bottom
planes of the tri-dimensional drawing. Initially, the bound state and the scattering states
interfere to produce the boundary condition 0 = 1. On the short timescale corresponding
to our parameters, the unitary evolution mainly rotates the bound state with respect to
the scattering state, giving rise to a bunching peak on the real and imaginary part of 0.

state OB(r) depicted in Fig. 8-7,a. The initial wavefunction O(R = 0, r) = 1 is a superpo-

sition of )B (r) and the continuum of scattering states. The accumulation of probability

near r = 0 can then be understood as arising from the interference between the bound

and scattering states that evolve at different frequencies. The exact evolution of the real

and complex parts of the bound- and scattering states under Eq.8.7 is plotted in Figs. 8-

7c,d. As shown in Fig. 8-7a, where the temporal wavefunction O(T) has been rescaled by
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the group velocity, the observed bunching feature in g(2 reflects the wavefunction of the

two-photon bound state. The size of the two-photon bound state and correspondingly

the width of the bunching feature 2
Tbvg ~ 70 pm, exceed the width of the potential well

of 2 rB - 35 pum, as expected for a potential with one weakly bound state. As a conse-

quence, the potential is well approximated by a simple 6-potential. Fig. 8-6 displays the

solution of the Schroedinger-like equation 7.1 with a simplified delta-function potential

(black curves), which agree well with our measurements and the theoretical predictions

and capture the essential features of the nonlinear two-photon propagation.

8.5 Tuning of the interaction by two-photon detun-

ing

Additional experimental evidence for the bound-state dynamics is obtained by tuning

the probe field relative to the EIT resonance, thereby varying the strength of the two-

photon interaction potential. As the probe detuning approaches the Raman resonance,

6 ~ Q2/(4A), the difference in refractive indices inside and outside the blockade radius

increases and the potential deepens (see Fig. 8-1). Consequently, the bound state be-

comes more localized and the bunching, quantified by g+(0), is enhanced, as evidenced

in Fig. 8-8a. In that regime, the measured correlation function differs significantly from

the prediction from our full theoretical model. At Raman resonance, the nonlinear inter-

actions become mainly dissipative: single photons are strongly absorbed by the medium,

with an opacity equal to the resonant OD in the absence of decoherence. Two-photon

states are transmitted with large probability as the Rydberg blockade tunes the large

absorption dip out of resonance. This strongly modifies the correlation-function: in the

denominator, the transmission is dominated by multi-photon states, dark counts and po-

larization imperfections. The last two-effect strongly reduce the maximum observable

correlation function, while the first effect requires the inclusion of higher many-body

states in the theoretical model for our typical probe photon incoming rates. The numer-

ator of the correlation function also possibly requires a many-body model to capture our

experimental results. As shown in Fig. 8-8b, for measurements at very low probe power,
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Figure 8-8: Effect of the two-photon detuning. Equal-time correlation function (a)
and spatial extent of the bunching feature (b) versus Raman detuning 6 from the EIT
resonance 1g) --+ r) for A = 317, showing increased photon-photon attraction due to a
deeper potential near Raman resonance (see Appendix D). The characteristic bunching-

timescale Tb is the half-width of the cusp feature of g (, defined at half-height between
the peak value at T =0 and the local minimum closest to T = 0. Error bars correspond
to ±lo-. The theoretical model (solid line) breaks down close to the Raman resonance at
6 = 1.3 MHz ~ Q2/(4A), where the single-photon component of the probe field is strongly
absorbed. c, Intensity correlation function for interacting photons g+() measured at
the two-photon Raman absorption dip, for A = 1.51. The dissipative interactions lead to
large bunching effects (the medium is strongly absorptive for single photons and trans-
parent for multi-photon states). The value g++(O) - 6 is limited by background noise
and transmitted many-photon states, which dominate the average measured rates. d,
Intensity correlation function for interacting photons g++(F) measured at the peak probe
transmission for A = 3F. The persistence of the bunching feature in a regime where
dissipative interactions result in anti-bunching underlines the domination of dispersive
interactions.

correlation function g++(0) up to 6 are observed. We stress that these large interactions

are dissipative.
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The opposite regime, A > 0, 6 < 0, shifts the two-photon transitions towards the

maximum of the transmission peak at 6 -- -y where -y is the Rydberg- to ground-state

decoherence rate. The potential depth is reduced (see Appendix D) and the transmission

visibly higher than that of the 2-level medium. As shown in Fig. 8-8c, a clear bunching

peak is still visible in the correlation function, followed by a wider sub-poissonian feature.

The existence of the bunching feature in a regime where dissipative interactions lead to

anti-bunching is a clear signature of the domination of the dispersive interaction for our

experimental parameters. Note that is that regime, the theoretical simulations are in good

agreement with our experimental results, confirming that the evolution of the two-photon

wavepacket is dominated by the attractive force between the photons.

8.6 Entanglement

Finally, we study the quantum coherence and polarization properties of the transmitted

photon pairs. Figure 8-9,a compares the purity of the two-photon density matrix p(T),

that includes photon interactions, to the purity of the product of one-photon matrices

pM 9 p(l) for non-interacting photons. At large photon separation r, the purity P(T)

of the two-photon density matrix is dominated by the one-photon decoherence due to

partial depolarization of the transmitted light. This depolarization is attributed to the

difference in group delay Td between the a+ and the faster a- photons (Tda - rd~ = 280

ns) on the order of the coherence time of the probe laser (650 ns). A direct measurement

of the Stokes degree of polarization gives Ps = 0.8 ± 0.05, in good agreement with the

purity of the reconstructed matrix P[p(T)] = 0.62 at large T (we expect P = (1 +p2) 2 /4).

At the same time, .+ photons bound to each other travel faster due to the reduction

of the dispersion evidenced in Fig. 8-1 and are more robust against this decoherence

mechanism, as evidenced by the greater purity at small T. Even in the presence of

this depolarization, the coherent nonlinear interaction in the dispersive medium produces

entanglement in the outgoing polarization state of two photons. We quantify the degree

of polarization entanglement by a time-dependent concurrence[197] C(T) (see Fig. 8-9b).

The obtained value C(0) = 0.09 ± 0.03 clearly indicates deterministic entanglement of

previously independent photons upon passage through the quantum nonlinear medium.
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Figure 8-9: Quantum coherence and entanglement. a, Purity P(T) = Tr[p(T) 2

of the measured two-photon density-matrix for A = 2.31' (blue symbols), approaching
at large photon separation the purity expected from the measured one-photon density-
matrix Tr[(p( 1) & p(1))2] (dotted black line). Interacting ,+o.+ photon pairs near T =

0 exhibit lower decoherence. Error bars (icr) are derived from the uncertainty in the
density matrix due to detection shot noise. b, Concurrence C(ti, t 2 ) calculated from
the measured p(ti, [2), indicating polarization entanglement of proximal photons upon
transmission through the quantum nonlinear medium.

The measured value is in reasonable agreement with the theoretical prediction Cth(0) =

0.13, calculated for a conditional phase 0(0) = 7r/4, a purity P(0) = 0.73, and 50% .+

linear transmission.

The realization of coherent, dispersive photon-photon interactions opens up several

new research directions. These include the exploration of a novel quantum matter com-

posed from strongly interacting, massive photons[29]. Measurements of higher-order cor-

relation functions may give direct experimental access to quantum solitons composed of a

few interacting bosons[198], or to the detection of crystalline states of a photonic gas[29].

By colliding two counterpropagating photons, it may be possible to imprint a spatially ho-

mogeneous phase shift of 7r on the photon pair, corresponding to a deterministic quantum

gate[62] for scalable optical quantum computation[10]. Finally, by accessing other Ryd-

berg states via, e.g., microwave transitions, it may become possible to control the state

of multi-photon pulses with just one quantum of light, thereby realizing a single-photon
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transistor[33] for applications in quantum networks, and the creation of multi-photon

entangled states.
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Appendix A

EIT

In this section, we briefly review the physics of Electromagnetically Induced Transparency

(EIT), which is the building block of the work presented in this thesis. EIT originates

from quantum interferences between excitation paths in multi-level atoms, resulting in

the transparency of an otherwise opaque medium for a coherent light field. EIT was

originally proposed by S. Harris and coworkers [199], building up on previous works about

coherent optics in multi-level atoms, such as coherent population trapping and lasing

without inversion [200]. Many singular effects of EIT, such as slow[185] and stopped [88]

light, are best described by the propagation of part-matter part-light particles, called

polaritons. Under specific circumstances, polaritons interact with an additional electric

field or with other polaritons, effectively mediating interactions between photons. More

extensive reviews on EIT can be found in [55, 201].

A.1 Dark states

We consider a medium composed of multi-level atoms with two long-lived states 1) and 13)

(typically hyperfine or magnetic sub-levels of the ground state), with a non-zero dipole

coupling to a short-lived state 12) (see Fig. A-1). For two coherent fields coupling the

11) -+ |2) and 12) -* 13) levels with respective Rabi frequencies Q, and Q, and detunings A,

and Ac, the interaction Hamiltonian of the system is, in the rotating wave approximation

and after transformation to the interaction picture:
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H = (Ap12) (21 + 613) (31 + QpJ2) (11|+ Q,13) (21) + h.c. (A. 1)

For one- (4,, = 0) and two-photon (6 = AP - AC = 0) resonance, the atomic superpo-

sition

ID)= 1(D) =(((t)1) - Qp(t)13)) (A.2)
G,(t)2 + Qe(t)2

is an eigenstate with eigenvalue zero. ID) is called a dark state: its orthogonality to

the excited state 12) prevents any decay from being observed by fluorescence once the

atoms are pumped into ID). In contrast, the two-other eigenstates necessarily have a

non-vanishing component of the excited state 12) (to satisfy the orthogonality of the

eigenvalues) and are referred to as bright states.

If the fields are turned on abruptly, the atomic distribution is progressively and inco-

herently pumped into the dark state, which is decoupled from the other atomic states li):

(ilHID) = 0. This process is known as coherent population trapping. It is also possible

to adiabatically transfer the atoms from the ground state 1) into the dark state ID),

which are equivalent in the absence of probe field. For a slow turn on of the probe field,

the atomic population adiabatically follows the evolution of the eigenstate with QP(t)

and the atomic population is transferred in the dark state without ever populating the

bright states. It is possible to extend this procedure to the final state 13) by adiabatically

reducing the control field Qc(t). The so-called STIRAP (stimulated Raman adiabatic

passage) completely transfers the atoms from state 11) to state 13) without populating the

intermediate decaying state 12).

The coherent population transfer to the dark-state is the underlying mechanism gov-

erning EIT. For an atomic population initially pumped into 11) and in the presence of

the control field, a slow varying pulse entering the medium rotates the population into a

superposition of 11) and 13), with the largest mixing angle at the peak of the pulse. After

the passing of the pulse peak, the population rotates back into 11), adiabatically following

the dark state evolution. Throughout this evolution, the atomic population is constantly

in the dark state and the light field is fully decoupled from the atoms, yielding a unity

transparency and index of refraction.
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Figure A-1: EIT level scheme. a, A-type EIT. A control field with Rabi frequency Q,
creates EIT conditions for a probe field (Q, ). The detunings are defined as 6 = A, - AC,
A , = p - 0 2 1 , Ac = Wc - 0 2 3 , where Wp, wc are the laser frequencies and u21, w23 the
corresponding atomic energy differences. IF is the lifetime of the excited state and 'y the
ground states decoherence. (b) Ladder-type EIT where the ground state 13) has been
replaced by a high lying metastable state.

A.2 Optical Bloch equations

Rigorously, the optical Bloch equations are the semi-classical limit of the Heisenberg-

Langevin equations (introduced in the following section), where the operators are replaced

by their average value. The Bloch equations govern the evolution of the density matrix,

which fully describe the atomic states in the presence of decay and decoherence.

In the absence of atomic correlations, the density matrix for the individual atoms are

replaced by a spatially averaged density matrix. The polarization density of the medium

for the probe resonance is determined from the off-diagonal elements of the density matrix.

The Bloch equations are particularly easy to solve for stationary fields, for which they

reduce to a time-independent linear system. For illustration, we consider the specific

example of EIT, but the method is very general. The master equation is:

1> = - [H(t), p] + L[p] (A.3)
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The Lindblad operator L takes into account the lifetime and decoherence effects. The

spontaneous decay of an excited level 1j) to lower lying states Ii) with rates Fjj is described

by:

= j (2aop7j - pojj - oujjp) (A.4)

where ouj = ji)(j|. Additionaly, external dephasing processes can create decoherence

between the atomic levels by introducing fluctuating energy shifts. These processes such

as laser linewidth, atomic motion in inhomogeneous magnetic fields, Doppler broadening,

are responsible for the decoherence of the off-diagonal elements of the density matrix.

Provided that the fluctuations are fast with respect to the typical evolution time of the

system, they can be modeled as:

Ldeph = (2rjjpju - - ui p) (A.5)

We consider an ensemble of three level atoms, as depicted in Fig. A-1,a. In the rotating

wave approximation (RWA), the Hamiltonian of the system is, in the interaction picture

HI(t) = 2 [QpeiAPtU21 + Qce i'c0 23] + h.c. (A.6)

where AP = p - W2 1 and Ac = Wc - W23 (see Fig. A-1). The elements of the density

matrix pi,j = (ilplj) obey the Bloch equations:

/i = - pij - iM[H 1 (t), p]fj) (A.7)

where yj = >j Fjj = Fj is the lifetime of the excited state i and 7y5 = FL + Fj +y +7 
for i # j.

The time dependance of the Hamiltonian can be removed by passage to the rotating

frame:

P21 -+ e iAPtp 21, P23 * e itP23, P31 _ e i6tP3  (A.8)

For the EIT A-system depicted in Fig. A-1, the optical Bloch equations are:
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Y21 Q
P21 = -( - iZp)P21 + i P31 + i (P - P22) (A.9)

7Y23 Q CQ
P23 = - ic)P23 + 2 P13 + 2 (P33 - P22) (A.10)

P31 = -( i6)P31ii+i§P21-i P32  (A.11)

They are further simplified by assuming that most atoms are in the ground state and

substituting pu = 1, P22 = P3 3 = 0 (which is exact to lowest order in Qp/Qc). In the low

probe intensity limit, Eqs. A.9-A.11 are solved to first order in Q, and the term -ifP32

is neglected in A.11. In that case, for a constant control field, the system of Eqs. A.9-A.11

reduce to a linear system in the frequency domain:

( - 2i6)
P21 = 2 2) (A.12)

(1 - 2iAp)(y - 2i6) + IQI( )

where we denoted -y = y31 and F = 721 = F31 + 1732.

The polarization density of the medium is P = KVP12 Tr[0-12P] = .fP 12 P21 and the

linear susceptibility XM (valid for Qp < Qc):

ki = 1 iF(y - 2i6)
X P) = 2 21a (F - 2iAp)(-y - 2i6) + (A.13

in terms of absorption length 1a = (Auo)-1, related to the resonant atomic cross-section

_10 - 21A12 1 p

A.3 EIT features.

A.3.1 Resonant control field

We first turn to the case of a resonant control field (Ac = 0). The otherwise opaque

medium characterized by its transmission Exp(- OD) is made transparent under EIT. The

residual absorption Exp (- OD/ (1+ is determined by the EIT linewidth -YEIT =

Q2/F and the decoherence -y and vanishes for 7YEIT > -y. The transparency window has

an approximately Gaussian shape of variance Aw, ) 7EIT/v8 0D (see Fig. A-2). For cold
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Figure A-2: EIT spectra. EIT intensity transmission spectrum (a) and corresponding
phase-shift (b) for a control beam on resonance (blue line) and off resonance (red line)
by AC = 31, for OD= 10, Qc = 1.21", -y = 0.05F. The grey dashed line is the response of
the medium in the absence of control field.

atomic systems, assuming a typical decoherence of 100 kHz and an optical transition of a

few 1015 Hz, the quality factor of the EIT resonance can easily reach 1010. The width of the

transparency sets the bandwidth of the system: the shortest pulses which can propagate

in the medium without absorption are of order T ~ Aw - 1. The narrow transmission

linewidth is associated with a strong chromatic dispersion, enforcing a reduced group

velocity:

Vg = = + - laY7EIT (A.14)1 +c&AX , )(0) .c Pa'Y+ jcl

In the large OD limit, the group delay Td = OD7-yj is larger than the bandwidth

limit rp - ODYiI-, enabling the loss-free compression of a full pulse in the medium.

The compression factor vg/c results from the slowing down of the front end of the pulse

with respect to the back end of the pulse still propagating at speed of light c outside the

medium. The peak amplitude of the probe electric field in the medium is equal to that

outside the medium for a bandwidth limited pulse in the absence of decoherence. As a

consequence, the energy of the probe field inside the medium is reduced by a factor Vg/C

and the energy difference is coherently stored by the stimulated Raman processes in the
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control field and atomic energy difference between the ground states.

The propagation of the probe light in a medium under EIT conditions is given by (see

Eq. 2.24):

08 10 -1 (i ~ \08-z (z, t) + ---- (z, t) = i (0)) O(z, t) - ay,2x((0)) 2 (z, t) (A.15)
0Z Vg 1t2 t

On resonance the second derivative of the susceptibility is purely imaginary. In the

coordinate system Z = z - Vgt and z = z the propagation equation for E(z, t) becomes a

diffusion equation:
a8= D (A.16)
Oz aZ2

with a diffusion coefficient:

1 aAi,()-2 (,
D" (1)20) (if(0) ) -21, (A. 17)

Eq. A. 16 describes the broadening of the slow-propagating pulse due to the finite band-

width, as described in Chapter 2.

A.3.2 Off-resonant control field

As illustrated in Fig. A-2, the response of the medium is modified when the control field

is detuned from the corresponding atomic transition. In particular, when the detuning,

A., is large with respect to the excited state linewidth IF, the transmission spectrum of

the probe field consists in a large central 1-photon absorption valley, a transmission peak

equivalent to EIT on two-photon resonance, and a narrow two-photon (or Raman) ab-

sorption dip, shifted from the two-photon resonance by the Stark-shift Q2/(4A,). The

transmission peak is unity at two-photon resonance in the absence of decoherence, and

is effectively reduced and shifted by an amount Acy/F in the presence of dephasing.

Similarly to the case of a resonant control field, the phase-shift cancels on two-photon

resonance and the group velocity is equally reduced. A noticeable difference is the emer-

gence of a non-zero group velocity dispersion, which dominates the bandwidth term in
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Table A. 1: EIT linear susceptibility: summary of the zero-,first- and second- order deriva-
tives of i = X on two-photon resonance (6 = 0) for an on-resonant (Ac = 0) and
off-resonance (Ac = 0) control field, in the absence of decoherence (y = 0)

Eq. A.15: the propagation equation now takes the form of a Schroedinger equation:

E az 1 92E1
__z - 2m* &Z2

(A.18)

with an effective mass: m* = 81,.

A.4 Heisenberg equations

In this section, we derive the Heisenberg-Langevin equations of motion corresponding to

EIT in a ensemble of 3-level atoms where an excited state 12) is coherently coupled to two

ground states 11) and 13). This approach allows for the quantification of the probe field,

which is necessary to describe Rydberg EIT in the large density limit, where correlations

are mapped onto the probe field. The evolution of an atom labelled j at position z is

described in the Heisenberg picture by the atomic operators & (t). The interaction of the

atoms with the (quantized) electric field E and the (classical) control field of slow varying
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Rabi frequency Qc(zj, t) is in the RWA: [186, 202:

H1 =12k- 3 t)&'21 + 2 Q(Zj, t) e 2ciwt&3 ] + h.c. (A. 19)

where P12 = -e(1I - 2) and C is the polarization of the field. The quantized positive

frequency field is given by a superposition of plane waves with wave vectors kj:

E+(z,t) = 2 ,,ikj(z-ct) (A.20)

Here we take the modes 1 to be continuous, and we consider a slow varying electric field

envelope E(z, t) with the normalization fLq dz IE(z, t)12 = 1 ( IE(z, t)12 is equivalent to a

probability density over the quantization length of the problem Lq). Its Fourier transform

E(k,t) = f dzE(z, t)e-ikz is non-zero over a small range 6k = k - kp (kp is the carrier

wave vector). Making the substitution > e1 - Lq f dkE(k, t)&keikz, the quantized

electric field is rewritten:

E+(z, t) = 2 $(z t)ei(kpz-rt) (A.21)

where w, = kpc. The field operator

S(zt) = d(6k)(6k,t)&k+keiskz (A.22)

is the annihilation operator for a photon in mode E(z, t) and obeys the bosonic commu-

tation relations:

[S(z, t), $t (z', t)] = 6(z - z') (A.23)

The photon-atom interaction depends only of the tranverse area A of the field through

the single photon-single atom coupling hg/2 = P 12 where g is related to the coop-

erativity 77 = -o/A by g2 = TI-'c. In the limit of a classical probe field, we can replace

g$(z, t) by the Rabi frequency of the probe field Q,(z, t).

For dense atomic media, we can defined coarse-grained continuous operators. The

linear density is J$i 6(z - zj) is replaced by the average atomic density n(z) at position

z (n = N/L for N atoms constituting an homogeneous one-dimensional medium of length
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L) and the continuous atomic operators, defined as

1 N
&m,n(Z, t) = _(( z j=1- )

n(z) sf)

replace the discrete operators (for any slow varying function or operator f):

f(z, t)(t) - j dzf(z, t) 1n(z)&mn(Z, t)

The V/Si normalization imposes the commutation relations of a single particle annihi-

lation operator (see at the end of this section):

1
[&k,I(Z, t), &,n(Z', t)] = (61m&kn(Z, t) - 6nk&mI(Z, t))6(z - z')

V/n(z)

Finally, we can define slow-varying envelope operators for the "polarization",

wave" and "control polarization" quantities:

&12 (z, t) = f(z, t)e-iwPt

&13 (z, t) = $(z, t)eiow-wc)t

32(Z = (z,t)eit

The total Hamiltonian is: H = Ho + ft1 with:

(A.26)

"spin-

(A.27)

(A.28)

(A.29)

o = h J

H= -fjdz /n(z)

dzw,($ftg) + h j dz(w21 PtP ± w+ i t$)

[geikpz (z, t)Pt(z, t) + Q(z, t)eikczd t (z, t)] + h.c.

The Heisenberg equations for the atomic operators 0:

ihdOihdt = [iio + fi$, +i %9

186

(A.24)

(A.25)

(A.30)

(A.31)
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are calculated using the commutation relations in Eq. A.26:

= (121 - j') _ + i e + i ,(eikpz (11 - &22)
22 2 U 2

= - - iA) e + ige '23 k$ + i C ikcz(&33 - &22)
2 2 2

S _ '131_ j6- +i1ce kz jgeikp z~

S2 2 2 _ -e~

(A.33)

(A.34)

(A.35)

The equations, are simplified in the low probe power limit, where the atoms are

populating the ground state 11) with a close to unity probability. To first order in

the probe field, the population operators reduce to &1 = V6, &22 = 0, &3 3 = 0. Fur-

thermore, the explicit dependance on the wave vectors is removed by the substitutions

S - eikpz I e eikcz and , - i(k-k,)z

= 121

C = -

= (31

(A.36)

(A.37)

(A.38)

where gp is the collectively enhanced cooperativity: gp

probe field, assuming all the population in the state 1),

polarization and spin operators become:

= V/nYg. To lowest order in the

the commutation relation for the

[$S(z, t), $t (z', t)] e (z - z')

[75(z, t), it(z', t)] ( - z')

(A.39)

(A.40)

The optical Bloch equations A.9-A.11 are the semi-classical limit of the above Heisenberg-

Langevin equations, where the operators are replaced by their average value. The prop-

agation of the probe electrical field is given by the slow varying envelope propagation

equation:
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at$(Z, t) + cO2&(z, t) = i -- P(z, t) (A.41)

A.5 Dark State Polariton

In the low probe limit, to first order, Eqs. A.36 -A.38 reduce to

-$ $(A.42)

- ij) $ + i # (A.43)

(A.44)

where we used the same notations as in section A.2. We now turn to the response of the

medium under EIT conditions, i.e. on two-photon resonance (6 = 0) and in the absence

of decoherence (y = 0):

=_ -iS (A.45)

- g, -4(F - 2iAp) 4 Q *
p = 4Fi- S - SI-- (A.46)

Q |Q12 2IQ

The polarization P can be adiabatically eliminated under the assumption that the slow

varying envelopes of the spin-coherence and the control field have a characteristic variation

time T significantly larger than the decay time of the excited state and the timescale of

the EIT process: 1/T < F, YEIT for the generalized EIT linewidth 7YEIT = Q2 / I- 2i_ l

[186, 202]. In that case, the higher derivatives of the spin operator S ~ S/T and S S/T

can be successively eliminated to yield:

9 P~t$(t) = 9"$(zt) (A.47)

This relation establishes an exact equivalence between the spin coherence and the electric

field, which characterizes the physics of EIT processes in the absence of decoherence. The

propagation of the probe electric field is equivalent to the propagation of a spin coherence

(so called spin-wave), whose envelope and group velocity are directly proportional to those
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of the photon field. The propagation in the medium is governed by the equation:

&t$(Z, t) + c9zS(z, t) = &t$(Z, t) = - aj(z, t) (A.48)

For a constant control field, it describes the pulse-preserving propagation of the field

$(z, t) = $(0, t - v9-z) (or equivalently the spin-wave) at a strongly reduced group velocity

Vg = c(1 + g2/ 1| 2 _1

More generally, for a time-dependent control field, the excitation propagating at slow

group velocity in the medium is described by a superposition of the electric field and the

spin-wave, a so-called Dark-State polariton:

J(z, t) = cos 6(t)$(z, t) - sin 9(t)S(z, t) (A.49)

0tI(Z, t) + vg1z I'(z, t) = 0 (A.50)

where the mixing angle tan2 6 = g/ IGI2 determines the group velocity vg = c cos2 6. The

group velocity now has a very simple interpretation: it is the weighted average speed

between photons propagating at speed c and frozen atoms, the respective weights being

determined by the mixing angle 6. Adiabatically reducing the control field intensity fully

maps the polariton field onto its spin wave component, a building block for photon storage

in quantum networks [88, 89, 203].

The polariton field operator 'J(z, t) is a bosonic operator (see Eqs. A.39, A.40):

[4J(z, t), f (z', t) ~ J(z - z') (A.51)

creating and annihilating a polariton with the envelope of the compressed field E(z, t)

inside the medium. In the regime g; >> Q 2 , the polariton is essentially an atomic excitation

in state 13), coherently shared by all the atoms overlapping with the compressed pulse

envelope. The quantum state of a single polariton in the medium is:

4')= dzE(z,t)tf(z,t)0) = cos6(t) JdzE(z,t)t(z)|0)® 111,12,...,iN) (A.52)

N E

- sin90(t) -7=1: z 0 0 11, 12 .... 3j ... I1N)
j=1
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where the envelope satisfies the slow group velocity, pulse conserving condition E(z, t) =

E(z - f dtv,(t ),O).
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Appendix B

Stationary Light Pulses in cold

atoms.

B.1 Stationary Light Pulses

Building on the theoretical framework developped in Appendix A, we turn to the ana-

lytical treatment of stationary light pulses. Stationary light pulses are obtained when a

standing wave control field is adiabatically ramped up to retrieve a spin-wave previously

stored in the medium[85]. In that case, the light is trapped with a non-vanishing com-

ponent of the electric field, and the medium can become highly nonlinear for the proper

level scheme [60, 111]. We consider the general case of co- and-counterpopragating control

fields in a 3-level A-system, detuned from the atomic resonance by A± = A, ± A where

AC = We - w2 1 is the average control field detuning, as depicted in Fig. B-1,a. Using the

coarse-grain slow-varying polarization P and spin S operators defined in Eqs. A.27-A.29,

the interaction Hamiltonian is given by (see Eq. A.31):

1  h d [g (eikp+(z t) + eikpz(Zt))t(B.

h I d,1 r(+ikcAk)-At + Q_,ei(k,+Ak_)z%At ) dt(Z )I+h

(B. 1)
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Figure B-1: Level scheme for stationary light pulse techniques. a, A running
wave control field consisting of two counter-propagating fields with equal Rabi frequency
creates mixing between the forward and backward propagating probe fields, resulting in
an optical bandgap in the medium and reflection of the incoming probe light b, A Bragg-
type reflection can also be achieved for a detuned standing wave control field creating a
periodical levelshift of the ground state 13) by off-resonant coupling to a state 14).

where $4 and $_ are the field operators for the forward and backward propagating pho-

tons, Q± the Rabi frequencies of the control fields and Ak± = tA/c, as depicted in

Fig. B-1,a. Over the length of our medium L - 1 cm, and for detunings of a few tens of

MHz, AkcL < 1 and we set this term to zero in the rest of our anlysis. To first order in

& (see Eq. A.44) we obtain from the Heisenberg-Langevin equations:

7 - -iAn) J3 + ' (Q+ei(kz-At) + Qei(kcz-t))

+±ii- (eikpzt + -ikpz_)

S = - - i6) $ + *(Q+e i(kczAt) + Q* i(kz-At))

(B.2)

(B.3)
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where 6 = AP - A, is the two-photon detuning, and AP the probe field detuning. The

propagation of the probe fields is governed by the slow varying envelope Maxwell equation:

:$ i9 = e Fikpz (B.4)
2

The detuning of the control field introduces rotating term with frequencies ± and

oscillating spatial dependancies e*ikcz. As a consequence, we can expand the atomic

operators in harmonics of i(kcz - At):

= Z,3(m)im(kcz-At) (B.5)
m

=>1(m)eim(kcz-At) (B.6)
m

The higher harmonics of the polarization create spatially oscillating terms eimkcz for the

probe fields. Nevertheless, for Iml > 1, these spatial oscillations are averaged out upon

integration of Eq. B.4. Due to this phase-matching constraint, we ignore the higher

harmonics of $. The system is now described by the following set of equations:

= t ( (* + 0+$(O) + Z-Fc(t2 (B.7)\,2 - P + 2 2 (B7

+ 
9 Pte,i(k,-k,)z e±i~t

2

9tiic21=iPf3(+1 e :FAt e±i (kc -k,)z (B. 10)

Due to phase-matching, terms oscillating faster than Ak = kp - are ignored, as they

average out upon spatial integration. The phase mismatch Ak can be factored away by

the transformation: 4Iei±Akz -* $±. The Maxwell equation is modified to:
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atS± ± c&2$ = ic(Ak)$± + iP3(+1)eAt (B.11)
2

The polarization terms )(±l) oscillate as ±e*iAt, which in turn cancels the explicitly

time-dependent terms in the propagation equation. This is reflected in the frequency

domain by using the following Fourier transforms (where 6w is considered small with

respect to the optical frequencies):

P(z, w) = dte'wP (z, t), (B.12)

$±(z, 6w + A) = dtei6wt±(z, t)e±iAt, (B.13)

yieding:

0 = - iA - i(A + 6w)) P )(z, 6w) + Q±(O)(z, 6w) (B.14)

2 2
+ -r(±2 (Z, 6W) + $+P ±(Z, &V A)

0 = - - imA - i(A w) (m)(z, w) (B.15)

+IQ+(m-) (z, 6w) + Q $(m+1) (z, 6w)2 2

0 = - - imA - i(o + &w)) $(m)(z, 6w) (B.16)

+±Q *+(m+)(Z, 6w) + IQ*p(m-)(Z w)

-i6w$±(z, 6w) ± cz$ ±(z, 6w) = ic(Ak)$±(z, 6w) + i 75(+1)(z, o -F A) (B.17)
2

By solving equations Eqs. B. 14-B. 16 (see section below for a discussion on how many

orders to include in the calculation), we obtain the linear susceptibilities X±± and the

mixing terms X -Fdefined as:

P(±1)(z, 6w T A) = X±±(z, 6w)±(z, 6w) + X±(Z, 6W) - (z, 6w) (B.18)

The evolution of the forward and backward propagating fields is governed by a set of
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coupled equations:

-iow$+ ± c&2$ = ic(Ak)$± + i x ± + i X±$ (B.19)22

The problem is simplified in the case of interest here, i.e. in the steady state regime

(6w = 0) with a forward input control field corresponding to the boundary equations

$+ (0, z = 0)) = 0 and ($_ (0, z = L)) = 0 where L is the length of the medium, considered

homegeneous. The transmission and reflection amplitude through the medium are given

by t = (ooand r = o" after integration over z of Eq. B.19.

B.2 Hot atoms versus cold atoms

To obtain the linear susceptibility X± and coupling coefficients XT± from Eq. B.14 -

B. 16, it is necessary to solve a cascade of linear equations for higher harmonics of the

spin coherence $( 2 m) and polarization density f( 2m+l). Stationary light pulses and the

associated bandgap were initially observed in room-temperature atomic vapors [85]. In

that limit, the motion of the atoms leads to rapid dephasing of the fast spatial oscillations

of the spin coherence. For EIT, the timescale of the process is governed by the EIT

linewidth 7EIT = Q2/ I' - 2iAI and is typically larger than 100 nanoseconds. During

that time, for a room-temperature vapor, the atoms are displaced by a distance of - 15

pm. This displacement is much larger than the extent of the spatial oscillations of the m-

th order spin coherence harmonics which are on the order of (mk,)-. As a consequence,

their contribution is nullified by setting $(m) = 0 for Iml > 1, yielding a close set of

equations for $(O), 1(±) and &±. The integration of Eq. B.19 gives results in excellent

agreement with the observations carried out in [85]. In particular, a large reflection

peak and strong transmission suppression, characteristic of a Bragg-type bandgap, were

observed on resonance (AP = A, = 0, A = 0) and the possibility to store pulses was

demonstrated in [85].

As pointed in several theoretical analysis [204, 105] and demonstrated experimentally

in [105], this behavior is strongly altered for cold atoms. For a temperature of 40 pK,

the motion of the atoms over the typical timescale of 100 nanoseconds is on the order
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of A, and the faster spatial oscillations of the spin coherence are partially preserved.

The most striking consequence in the resonant case is the absence of photonic bandgap

and of stationary light, reported in [105]. Stationary light pulses without Bragg grating

have been discussed for double A-schemes with large energy splitting [105] or "diamond"

configuration with orthogonal polarizations of the control fields [106, 95], for which the

control fields do not form a standing-wave.

As described in Chapter 4.2, we probe the existence of a photonic bandgap in a three

level system where the forward and backward control beams are symmetrically detuned

by an amount A - 20 MHz from the resonance. In that situation, the control fields form a

moving standing wave. The running standing wave is shifted by a wavelength A, = 27r/kc

in a time 1/A, and in the limit JAl > -YEIT ~ Q2/ |A, the effect of the higher order

harmonics of the spin coherence $N(mO) dephase and average out. In that case, we verify

experimentally that the main features of the observed reflection are in good agreement

with the 0-th order theory (see Section 4.2).

To 0-th order, the susceptibilities and coupling terms are given, for balanced control

fields Q+ = = Qc, by:

. 9(F ± iA) + Q2
X±± =ig (B.20)

2F2+ > (]2 + A2)' (.0

C

= -ig, + ,(r2 (B.21)

where IF = F - 2iA, y = - 2i6.

B.3 Distributed Bragg Reflection in four-level atoms

We now consider the effect of an extra level 4), off-resonantly coupled to the ground state

13) by the co-and counter-propagating fields, as described in Fig. B-1,b. We here assume

that the coupling only exists between the levels 13) and 14). The AC Stark shift induces

a periodical modulation of the energy of the state 13), which affects the propagation of

the probe fields. In the off-resonant regime, where the control fields are detuned from the

13) - 12) transitions, this is equivalent to a modulation of the index of refraction of the
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medium, creating a distributed Bragg reflector. Here we assume that the Stark shift hAL

at an antinode of the control field lattice (AL is four times the level-shift generated by a

single control field, due to constructive interference of the electric fields). In our case, the

control fields are red-detuned from the 13) -> 14) transition and AL < 0.

We model the effect of the fourth level by simply introducing a periodic modulation

of the two-photon resonance:

AL
A, --* A, + (1 + cos(2kcz - 2At)) (B.22)

2

in Eq. B.3. Here we consider the general case of a running standing wave, with the same

notations as in the previous section. In our experiment, we will only focus on the case of

a still standing wave (A = 0). Eq. B.9 becomes:

~()- AL(m) _ jAL (' m+2) ±,(m
2 4 (B.23)

+ ' (M) +-Q* 15(m+) + -Q* 6(m-1)

+ mS~)-(2Y - +6 2(m +

The periodic Stark-shift adds an offset AL/2 to the two-photon resonance, resulting

from the average level-shift, as well as additional direct coupling terms between the spin

harmonics $(m) and $(m±2). For a three-level system,the harmonic terms of the spin-wave

expansion were only indirectly coupled through the polarization density terms p(2m±)

for A # 0. Here, the coupling survives even on two-photon resonance (6 = 0) and

for A = 0. As done previously, we can now solve the Heisenberg equation to derive

the susceptibilities x±,± and mixing terms X±,T and integrate the coupled propagation

equations B.19. Experimental and analytical results are described in Section 4.2.
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Appendix C

Rydberg EIT: Analytical model

C.1 Theoretical model

Here we present a theoretical model for Rydberg EIT, for a quantized probe field. For

the conditions of the experiment, the beam width is smaller than the transverse extent

of the medium, so that the atomic density can be assumed constant across the beam.

To simplify this presentation, we will initially neglect the decay of the Ig)- r) coherence,

consider a beam waist that is much smaller than the blockade radius rb, and assume

that the medium has uniform density along the propagation direction z. However, for

the numerical analysis used for comparison with experiments, we will lift these last three

assumptions, as discussed below.

We define the collective atom-photon coupling constant gp (which has units of fre-

quency) via gp2 = Fc(OD/L), where c is the speed of light and L is the length of the

medium, which extends from z = 0 to z = L. Let $t(z), Pt(z), and St(z) be the slowly-

varying operators for the creation of a photon, an intermediate-state excitation (le)), and

a Rydberg excitation (Ir)), respectively, at position z. These satisfy the same-time com-

mutation relations [$(z),gt(z')] = [P(z),Pt(z')] = [$(z), $t (z')] = 6(z - z'). Note that

P(z) and $(z) are only defined inside the medium. The Heisenberg equation of motion

for z < 0 and *z > L (i.e. outside the medium) is simply

ats(zt) = -ca'$(zt), (C.1)
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while for z E [0, L] (i.e. inside the medium) the equations of motion are [62]

at$(zt) = -ca$(z, t) +i -fP(z,t), (C.2)
2

at-P(z, t) = - EP + i (z, t) + i $(z, t), (C.3)
2 2 2

t$ (z, t) = i Q5(z, 0)- i dz'V(z - z')(z')(z')(z),(C)
2j

where V(z - z')=C6 /(z - z') 6 =(rb/(z - z')) 6Q2/(2F). Langevin noise can be omitted as

it does not affect our calculations [62, 159].

We take the input state as a weak coherent state with real amplitude # in a single mode

with an envelope h(t). Thus, before the pulse has entered the medium, it is described by

a wavefunction [205]

10(t)) = exp[@(&t - &)]I0), (C.5)

where

,i dzh(t - z/c)Et(z) (C.6)

is the creation operator for a photon in mode h(t), normalized according to f dzh(t -

z/c)12 = 1, so that [e, &t] = 1. We assume that h(t) is a long flat pulse, such that, except

for some short transient period, h(t) can be assumed constant most of the time; during

that time, we then define a = fh(t). For a very low input photon flux, i.e. small a, it is

sufficient to keep track of at most two photons, so that the wavefunction can be written

as

10(t)) = c|O) + f dzE(z, t)$f (z)10) + dz(zt) (z)0) + L S(zt(z)0)

+- f 0" dz f dz'EE(z, z', t)&t(z)$t (z') 0) + fcc dz fL dz'EP(z, z', t)8ft(z)Pf(z')I0)

+} fo dz fL dz'PP(z, z', t)Pt (z)Pt (z') 10) + f_00 dz fL dz'ES(z, z', t)$t(z)$f (z') 0)

+} fL dz fL dz'SS(z, ) fL dz f dz'PS(z, z', t)Pt (z)Sft(z')10)

(C.7)
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where the first line describes the vacuum and the single-excitation component, while

the last three lines describe the double-excitation component. Without loss of general-

ity, we take EE(z, z') = EE(z', z), PP(z, z') = PP(z', z), and SS(z, z') = SS(z', z).

Spontaneous emission, in general, requires a density matrix description. However, in the

weak-field limit (a < 1), the change of the single-excitation component due to the decay

of the double-excitation component is negligible, so that the wavefunction treatment - as

in the stochastic wavefunction formalism [206] - is sufficient. Similarly, in the weak-field

limit, we can take c = 1 in Eq. (C.7).

The single-excitation component of 10(t)) is not subject to interactions and, thus, prop-

agates through the EIT medium unperturbed. Since we took h(t) ~ a/3, Eqs. (C.5,C.7),

therefore, give a simple time-independent solution E(z, t) = a. A time-dependent solu-

tion would give (in the limit gp > Q) the EIT group velocity vg = Q c/g2, EIT time

delay Td = OD . F/Q , and EIT transparency window with width B = ./(IV8- OD)

(i.e. in frequency-space IE(w, L)12 oc exp [_W2/(2B 2 )]) [202] (see also Appendix A).

We now turn to the two-excitation component of 10(t)). Letting z and z' be the

coordinates of the two excitations, we divide the z-z' plane into nine regions [see Fig.

C-1]. To obtain the equations governing the two-particle amplitudes in these regions, we

use Eqs. (C.2-C.4) and identities of the form EE(z, z') = (0I$(z)$(z')1) and ES(z, z') =

(0 (z)$ (z')|I 7).

In region 7, neither of the photons has entered the medium, and, EE(z, z') = a 2 , which

follows from matching Eqs. (C.5) and (C.7). This gives a time-independent boundary

condition

EE(z, z' = 0) = a 2  (C.8)

for region 4, where the equations of motion are

&,EE(z, z') = -c(2 + &z,)EE(z, z') + igEP(z, z'), (C.9)

aEP(z, z') = -(ca, + F/2)EP(z, z') + igEE(z, z') + iQES(z, z'), (C.10)

&tES(z, z') = -cD2ES(z, z') + iQEP(z, z'), (C.11)

where we have defined Q = Q,/2, g = gp/2 to simplify the notation. These equations
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Figure C-1: The schematic diagram of the two-particle wavefunction. z and
Z' are the coordinates of the two particles, and the medium extends from 0 to L. In
regions 1, 3, 7, and 9, both excitations are outside the medium. In regions 2, 4, 6, and
8, one excitation is inside the medium, while the other one is outside. Finally, in region
5, which is shown in Fig. 7-6, both excitations are inside the medium. We assume that
the incident wavepacket is much longer than the extent of the medium (even after EIT
compression). Therefore, the two-excitation wavepacket (boundary shown by the dashed
line), which is moving in the top-right direction with c, is much larger than region 5. The
distortion of the wavepacket's boundary due to EIT time delay is not shown. For the ease
of presentation, the broadening of the depletion region in region 6 assumes c/vg = 3 (in
the experiment, c/vg is 5 orders of magnitude larger).The diagram is symmetric across
the line z = z', and it is not necessary to define, for example, separate amplitudes for
gt(z)$t(z') and gt(z')St(z) (see Eq. C.7).

describe the propagation of the photon component at position z outside the medium at

the speed of light and the propagation of the Rydberg polariton at position z' inside the

EIT medium. The time-independent boundary condition Eq. (C.8) gives rise to a steady-

state solution of Eqs. (C.9-C.11), which, together, with a symmetric solution in region 8,
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gives boundary conditions for region 5:

EE(z = 0, z') = EE(z, z' = 0) = a, (C.12)

ES(z = 0, z') = -ag/Q, (C.13)

EP(z = 0, z') = 0. (C.14)

Note that these boundary conditions satisfy the ideal dark-state polariton relationship

[202]. In region 5, both excitations are inside the medium and are subject to interactions

as described by the following propagation equations:

OtEE(z, z') = -c(z + a,,)EE(z, z') + ig(EP(z, z') + EP(z', z)), (C.15)

at EP(z, z') = -(ca + r)EP(z, z') + ig(EE(z, z') + PP(z, z')) (C.16)
2

+iQES(z, z'),

&,ES(z, z') = -c&zES(z, z') + igPS(z, z') + iQEP(z, z'), (C.17)

9tPS(z, z') = -(r/2)PS(z, z') + igES(z, z') + iQ(PP(z, z') + SS(z, z')), (C.18)

atPP(z, z') = -FPP(z, z') + ig(EP(z, z') + EP(z', z)) (C.19)

+i(PS(z, z') + PS(z', z)),

tSS(z, z') = iQ(PS(z, z') + PS(z', z)) - iV(z - z')SS(z, z'). (C.20)

The time-independent boundary conditions [Eqs. (C.12-C.14)] allow us to solve Eqs.

(C.15-C.20) in steady state. The resulting depletion of IEE(z, z')12 in region 5 is shown

schematically in Fig. C-1 and is plotted in Fig. 7-6. This gives a boundary condition at

z = L to region 6, which, together with the boundary condition EE(z > L, 0) = a, yields

a steady-state solution in region 6, where Eqs. (C.9-C.11) hold. Finally, in region 3, both

photons are outside the medium, so EE(z, z') is constant along constant (z - z'), and

g(2 )(r) can be read out from the top boundary of region 6 [red line in Fig. C-1] using c as

a conversion factor (and normalizing by IE(z)14) [205]:

g( 2)(_) - IEE(z = L + cT, z' = L)12/1a1 4. (C.21)

It is important to point out that, since EE is proportional to a 2 , g(2 )(T) does not depend
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on a. It is also important to emphasize that the steady-state equations in region 6 [Eqs.

(C.9-C.11) with left-hand-sides replaced with 0] are equivalent to the time-dependent

propagation of a single-photon along z' with z/c playing the role of time. Therefore, the

steady-state depletion feature in EE(z, z') on the left boundary of region 6 [green line in

Fig. C-1] is converted into g(2)(r) in two steps. First, ignoring the effects of finite EIT

bandwidth, this feature is scaled up by c/vg and is mapped onto the top boundary of

region 6 [red line in Fig. C-1]. Second, it is converted to g(2) (r) using the speed of light

via Eq. (C.21). Thus, to a good approximation,

g(2 )(r) ~ jEE(z = L,z' = L - VgT) 2 /jac4 , (C.22)

an expression we will use below for analytical calculations.

To compute g(2) (T) numerically for comparisons to the experiment, we extend the

model to include several additional effects. First, we introduce the measured decay rate

y/2 ~ 250 kHz of the operator S in Eq. (C.4). The effect of this spin-wave decoherence on

g(2) (T) is, however, very weak. Second, we include the longitudinal variation in the density

Af(z) by replacing g2 with [1cOD/(2u,)] exp(-z2/(2U2))//27, where a, is the longitudi-

nal width of the Gaussian density profile. In this case, the entire z-z' plane is governed

by the correspondingly generalized Eqs. (C.15-C.20). Finally, we take into account the

transverse extent of the beam by writing V(z - z') = C6 [(z - z') 2 +r2 - 3 , where r1 is the

transverse distance between the two incoming photons whose probability distribution is

determined by the Gaussian transverse profile of the probe beam. Neglecting probe-beam

diffraction, this amounts to solving Eqs. (C.15-C.20) for different rI; the numerator in

g(2 )(T) [Eq. (C.21)] is then computed by taking an average over the r1 distribution. The

results of these calculations are compared to the experimental measurements in Fig. C-2

and in Figs. 7-2,b, 7-5 and show very good agreement. We achieve best agreement for

a beam waist of wo = 6pm, which is slightly larger than the measured value of 4.5 pm,

possibly due to imperfect positioning of the cloud relative to the waist and due to finite

diffraction of the beam along the length of the atomic cloud. In contrast to Fig. 7-5, where

the experimental detection noise is included in both the theory and the experiment, in

Fig. C-2, the detection noise is not included in the theory and is subtracted from the

experimental data.
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Figure C-2: Comparison with numerical and analytical models. Measured same-
time photon-photon correlation function for Jr)=77S1 /2 (left) and 100S1/ 2 (right) with
EIT linewidths 'YEIT= 2 0 (o), 27(V), 16(A), 22,(o), 26(<) MHz. All curves are rescaled to
compensate for background and noise detection events [hence the subscript c in g (0)].
The solid color curves correspond to numerical simulation, following Eqs. (C.15-C.20)
in the steady state and taking into account the transverse Gaussian profile of the probe
beam, the longitudinal density variation, and the decay of the jg)-Ir) coherence. The black
dot-dash curve is the solution Eq. (C.42) to the one-dimensional diffusion equation (C.40)
in the limit of large OD and assuming that V(r) is a step function of size 2 rb, for 'YEIT= 2 0
MHz and L = 4.2az. For Ir)=100S 1/ 2 , where rb/WO~ 3, the solution to the simple one-
dimensional diffusion equation, the numerical simulation, and the measurements converge
at high atomic density.

C.2 Approximate effective description: diffusion equa-

tion with local loss

In order to obtain an approximate single equation describing the steady-state behavior of

the two-particle wavefunction, we now analyze the steady state of Eqs. (C.15-C.20). We

define ES±(z, z') = (ES(z, z') ±ES(z', z))/2, EP±(z, z') = (EP(z, z') ±EP(z', z))/2, and

PS±(z, z') = (PS(z, z') ± PS(z', z))/2, as well as center-of-mass and relative coordinates

R = (z + z')/2 and r = z - z' of the two excitations. To simplify the equations, we further

define U(r) = 2 - V(r) . F/Q2 (then U(rb) = 1) and rescale time and all frequencies by

205

77S112

-......
r.J-U

0.8-

0.6

0.4-

0.2

0

100S1/2bosh 2

*-

la 1 Ml
34 8 5 L L

3 2 3 21 11



,y, while spatial coordinates are rescaled by 2c/F. In steady-state, Eqs. (C.15-C.20) then

become

0 = -REE + i2gEP+, (C.23)

0 = -!aREP+ - arEP- - EP+ + ig(EE + PP) + iQES+, (C.24)

0 = -aREP - arEP+ - EP- + iQES_, (C.25)

0 = -}ORES+ - &ES_ + igPS+ + iQEP+, (C.26)

0 = -}!RES_ - &rES+ + igPS + iQEP_ (C.27)

0 = -PS++igES++ iQ(PP + SS), (C.28)

0 = -PS_+igES_, (C.29)

0 = -2PP+i2gEP++i2QPS+, (C.30)

0 = i2QPS+ - iQ2 USS. (C.31)

We next simplify these equations using a number of approximations. For the parameters

studied in this experiment, we checked numerically that the following are all excellent

approximations (except near R = 0, the error in EE after all the approximations is at

most a few percent). Here we simply list the steps leading to the effective equation, while

the full derivation and analysis will be presented elsewhere. We solve Eqs. (C.29,C.30)

for PS_ and EP+, respectively, and insert the results into Eqs. (C.27,C.23), respectively.

We neglect all but two terms that form the dominant balance in Eqs. (C.24,C.25,C.27)

- this determines how variables adiabatically follow each other. We also neglect the last

term in Eq. (C.26). Finally, we combine Eqs. (C.28,C.31) into an expression for PS+ by

eliminating SS. The result is

0 = -REE + 2PP - i2QPS+, (C.32)

0 = -aEP_ + igPP, (C.33)

0 = -EP-+iQES_, (C.34)

0 = - RES+ - &ES- + igPS+, (C.35)

0 = -DrES+ - g2 ES-, (C.36)

PS+ = igV(r)ES+ + iQV(r)PP, (C.37)
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where

V(r) = 1 ) (C.38)
1 - 2 i(r/r) 6

defines whether Irl is larger or smaller than rb [62]. Eliminating EP- and PP from

Eqs. (C.32-C.34), we find that -(g/Q)EE obeys the same equation of motion as ES+

in Eq. (C.35). Since -(g/Q)EE also has the same boundary conditions as ES+, EE =

-(Q/g)ES+ at all R and r. This means that ES+ and EE obey the dark-state-polariton

relationship for all R and r [202]. This is a surprising result, as one would not naively

expect this relationship to hold within the blockaded region. Eliminating EP_, PP, ES_,

and PS+ from Eqs. (C.33-C.37), we find a closed diffusion equation for ES+:

2
RES+ = -2g 2 V(r)ES+ + - (1 + Q2 V(r)) 9 ES+. (C.39)

92

Since EE = -(Q/g)ES+, EE obeys the same equation. Reverting to the original units,

we obtain Eq. (7.1) (with la = L/OD):

OD 4L (I e, 2
DREE = V(r)EE + + V(r) O EE. (C.40)

L OD r

g(2 ) (r) can be read out from the solution of this equation along the boundary z = L [green

line in Fig. C-1] via Eq. (C.22). It is remarkable that, for the full range of parameters

considered in this experiment, the set of nine equations (C.23-C.31) is well-approximated

by a single simple diffusion equation with a local loss term. The second term on the

right-hand-side of Eq. (C.40) is the diffusion term, while the first term is the local loss

term. Outside of the blockade radius (V(r) = 0), we have a pure diffusion equation with

a 4L/ OD diffusion coefficient and no loss. Inside the blockade radius (V(r) = 1), the

diffusion coefficient is increased to 4(1 + (QC/F) 2 )L/OD. An increase in the diffusion

coefficient increases g(2 ) (0) and increases the width at half-maximum rc of the dip in

g(2 )(r). In particular, a larger Q, gives a larger g(2)(0). The local loss term is nonzero

on a strip of width ~ 2Tb (or more precisely ~ 2rb/2 1/6 ) where it has rate OD/L. This

amplitude OD/L is consistent with physical intuition: |EE 2 decays as IEE(R = L)12 OC

IEE(R = 0)12 exp(-20D) - the factor of 2 accounts for the fact that either of the two
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photons can be absorbed. The physics of this diffusion equation is as follows: the local

loss term tries to deplete a narrow strip of width ~ 2rb, while the diffusion term competes

with the loss, preventing the depleted region from being too narrow. The diffusion term

comes from the fact that the EIT medium cannot support without loss features narrower

than the EIT bandwidth B [2021. Its effect is illustrated by the following simple situation.

Suppose we had no loss term and an incoming boundary condition EE(0, r) = 6(r). Then

EE(L, r) will acquire a width ~ L/V OD. Converting to time using vg, we would have a

width ~ L/(vgv OD) = rd/v OD ~ 1/B in agreement with the EIT bandwidth limit.

As we have already stated, this simple diffusion equation matches extremely well the

solution of the full set of equations with a homogeneous density profile in the iD-channel

geometry (i.e. r1 = 0). When the longitudinal density variation A(z) oc exp[-z 2 /(2o-2)]

is included, the solution to the diffusion equation also agrees well with the solution of the

full set of equations provided we take L ~ 4.2o-_.

Under the approximation that V(r) is a delta function or a step function and assum-

ing the boundary conditions are along R = 0 and r = +oo, Eq. (C.40) can be solved

analytically using a Laplace transformation in R. The inverse Laplace transform can be

taken exactly in certain limits.

Specifically, in the case of V(r) ~ 2 rb6 (r), we find that g( 2 )(0) depends only on x

ODby OD, where ODb = OD - rb/L is the blockaded optical depth [62]. In particular, for

x < 1, g(2 )(0) 1 - xV/2/r, while for x >> 1, g(2 )(0) ~ 8/(7rx 2 ). For x > 1, the width

of the dip in |EE(L - r/2, r)12 is given by ~ 4InverseErfc[1 - 2-1/21/ OD 3/O.

To get to the time units, one has to multiply by the EIT time delay Td, so we get the

correlation time

rc ~ 1.05/B, (C.41)

as expected from the physical intuition that the EIT medium cannot support without

loss features wider in frequency space than B. Eq. (C.41) is shown as a dashed line in

Fig. 7-5,d. It is remarkable that this simple formula derived by analytically solving the

diffusion equation with delta-function loss term matches extremely well the experimental

results.

In the case of V(r) being a unit step of length 2rb [i.e. f(Irl < rb) = 1 and f(Irl >
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rb) = 0], in the limit of large OD, we find:

4(1 + (Qc/F)2 ) [ Dbg (2)(0) ~ld41+( /p2 exp - . (C.42)
\r OD e /1 + (Qc/F) 2

In Fig. C-2, we compare this analytical result to the full numerical solution and to

the experimental data and find good agreement for the 100S 11 2 Rydberg state (for which

the propagation becomes nearly one-dimensional) in the limit of large OD. Eq. (C.42)

expresses in a precise mathematical language the qualitative statements made in Chapter

7. Indeed, while g(2 ) (0) drops exponentially as one increases ODb beyond unity, the

reduction in g( 2 ) (0) due to an increase in OD (for a fixed ODb) is much slower (- 1/ OD).

We also see from Eq. (C.42), that the condition for the blockade to work used in Chapter

7 (ODb > 1) can be stated more precisely as ODb > 1 + (Qc/F) 2 . This condition simply

means that the loss term must exceed the diffusion (with V = 1) on the length scale of the

blockade radius, as stated in Chapter 7. One possible interpretation of this more precise

condition is an effective renormalization of rb when Q, > IF. This interpretation is also

supported by the fact that the blockade radius of SS can be shown to be determined by

the same renormalized rb.
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Appendix D

Rydberg EIT in the dispersive

regime: Schroedinger equation

D.1 Derivation of the Schroedinger equation

In this section, we present the theoretical framework describing photon interctions in

the dispersive regime of Rydberg EIT, following the approach for the dissipative regime

described in Appendix C. To a good approximation, the atomic density is constant

across the probe beam, and all experiments are done in the regime where the blockade

radius is larger than the beam waist. For these reasons, a one-dimensional approximation

holds. Along the propagation direction z, we consider a Gaussian atomic density p(z) =

exp[-z 2 /(2o2)], normalized by the peak density po, with root-mean-square width u'. We

define the peak atom-photon coupling constant g, via g2/(Fc) = poco = OD/(v'_Frz),

where uO is the resonant atomic cross-section and OD the resonant optical depth of the

medium. We consider the evolution of the slowly varying operators gt(z), Jft(z), and

$t(z) corresponding to the creation of a photon, an intermediate-state excitation (Ie)),

and a Rydberg excitation (jr)), respectively, at position z. These satisfy the same-time

commutation relations [8(z),8t(z')] = [P(z),Pt(z')] = [$(z), $t(z')] = 6(z - z'). The
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Heisenberg equations of motion are then given by [62]

at$(z, t) = -c. $(z, t) + i r p (z) P(z, t), (D.1)
2

tP(z, t) = - - i(A + 6)) -P(z, t) + i /p(z)$(z, t) + i (Z t), (D.2)

t$S(z, t) = - (- i) $(z, t) + i QP(z, t) (D.3)

-i dz'V(z - z')t (z', t)$(z', t)$(z, t),

where V(z) = C 6 /z 6 , A = wre - w, and 6 = wp + Wc - Wrg. Here wp and we are the probe

and control frequencies, while wre and wrg are the le) -- r) and 1g) --+ r) transition

frequencies, respectively. The Langevin noise is omitted since it does not affect our

calculations. As in Appendix C, the input is assumed to be a weak coherent state of the

form

exp [oz dz($t (z) - $(z))] 0), (D.4)

where, for simplicity, a is assumed to be real. The single-photon and two-photon prob-

ability amplitudes are defined as E(z) = (0I$(z)|4J) and EE(zi, z 2 ) = (01$(Zi)$(Z2)|1),

respectively, where IT) is the wavefunction of the system while 10) is the vacuum state.

We define

( EE(zi, z 2)
E(z)E(z2)(D.5)

which is unity in the absence of interactions, and

0 (r) = 0(zi = zo + cr, z 2 = zO), (D.6)

where zo is chosen to be outside of the medium: zo > o-. Then g( 2 )Qr) = 4'(T)1 2 and

0(r) = argO(r), provided that the single-photon component dominates the denominator

of g(2 ). (This approximation may break down in the presence of strong linear absorption.)

In order to compute 0(r) numerically (solid lines in Figs. 8-5,c and 8-5d, and solid

blue lines in Fig. 8-6), we follow the approach described in Appendix C. In particular, the
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denominator in 4(T) can be easily found analytically using the EIT linear susceptibility:

r - i6) OD
E(z > zo) = a exp 2 2 2 . (D.7)

()2 + (1: - i(A + j)) (22-i

This formula (divided by a) is used to obtain the blue and, for Q, = 0, the gray dashed

curves in Fig. 8-1 and in Fig. 8-2,a. It also shows that peak linear transmission is at 6 =

-9 + O(7y2 ), while peak (Raman) absorption is at 6 = 1 (1 - (i+ + O(z- 3 )

To obtain analytical insight into the physics underlying the numerator of 0(T), we

approximate the medium as a homogeneous slab with length L = 4.20-, (see Appendix

C), i.e. we re-define p(z) to be 1 in [0, L] and 0 otherwise and rescale g2 by v/_2 7-/L.

Furthermore, we take 6 = y = 0, so that, in particular, E(z) = a. Then for z1, z 2 E [0, L],

repeating the same approximations as in Appendix C, we obtain a Schroedinger-like

equation for the two-photon probability amplitude

iREE(R, r) = - 1( 92+ U(r) EE(R,r), (D.8)
I2r-n (r)r I

where the spatially dependent mass rh(r) and potential U(r) are given by

1 _4L (2A (c 2 \= - -L 2+ i- C2V r) (D.9)
2in-(r) OD F '

OD
U(r) = L V(r), (D.10)L

and

1
V(r) = 2A r6 (D.11)

Here R = (z1 + z2 )/2, r = Z1 - z 2 , and the resonant blockade radius is defined as

rb = (2FC6 /Q2) 1/6. The initial condition is a uniform wavefunction EE(zi = 0, z 2) =

EE(zi, z2 = 0) = a 2

By comparing the solutions of Eq. (D.8) with numerical simulations of the full dy-

namics, we find that for A z 0, this equation does not approximate the full dynamics as

well as it does for A = 0, with the error in EE as large as ~ 20%. However, we find that
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it still captures the main qualitative features of the two-photon evolution. In the regime

IAl > F, QC, an excellent agreement with the full dynamics can be achieved by keeping

higher-order derivatives in the effective equation.

In the presence of nonzero A, the blockade radius is increased to fB = rb 2 1/12

In the limit of IAl > F, it corresponds to the off-resonant blockade radius rB = (4 Al C 6 /2) 1 / 6

defined in Chapter 8. Outside the blockade region, rh(r > FB) stems directly from the

effective mass of a single dark-state polariton, which, in the limit JAl > F, is given by

[207, 106, 95]

2h ~ c A F hw
m m = m = (D.12)

Vg 167ga AC2

For our parameters, at the center of the medium, it corresponds to |ml ~ 12.

These considerations indicate that, for A > 0(< 0) and lA > F, Q., we obtain a

Schroedinger equation with negative (positive) mass and a potential barrier (dip) within

the blockade radius. Note that, for the boundary value problem, the solution for a negative

mass and a repulsive potential is formally equivalent to that for a positive mass and an

attractive potential under the exchange EE -+ EE*. However, for A < 0, V(r), and

hence the potential, have a resonant Raman feature around the blockade radius, which

breaks this symmetry.

To simplify the analysis, we make an additional approximation by assuming that the

boundary conditions are EE(R = 0, r) = EE(R, r = too) = a2 . We find that this

approximation is more forgiving than the approximations used in the derivation of Eq.

(D.8). Dropping the r-dependent term in the effective mass (since it is typically small) and

approximating the potential with a square well, we end up with a Schroedinger equation

with a complex mass and a square-well potential with a complex amplitude, which can

be solved directly (see, e.g., the top theoretical curve in Fig. Id of Chapter 8). The

analytical solution is further simplified if one approximates the square-well potential with

a J function of the same area. This is a reasonable approximation because the variations

in EE(R, r) occur at a scale much larger than fB; for |Al > F, when the mass and the

potential are real, this follows from the fact that there is a single bound state and its

extent is much larger than FB, as we will verify below. The mass and the potential then

214



6 -Re[V]

4

A=14 MHz 2 Re[V]

-0.4 IT. ~ 0.4 r/L

A=-14 MHz

Figure D-1: The shape of the effective potential well. Effective potential V of
the Schroedinger-like equation D.8 for a blue-detuned (A = 14 MHz, blue lines, negative
effective mass) and red-detuned (A = -14 MHz, black lines, positive effective mass) probe
field on two-photon resonance, for Q, = 10 MHz. The real part of the potential (full lines)
generally dominates over the imaginary part (dashed lines). For a blue-detuned probe,
the potential displays additional feature at r - rB corresponding to the resonance with
the two-photon Raman absorption.

simplify to

1 4L 2
2r-n OD F '

1
U(r) co2ODB 2A 6(r), (D.13)

r+

where ODB = OD x fB/L is the optical depth within a blockade radius and co =
2a1/6

21a/3 (2+') is chosen to keep f drU(r) unchanged under the approximation. For

JAl > F, arg(co) = 0 and 7r/6 for A > 0 and A < 0, respectively, accounting for
non-negligible Raman absorption for A < 0 and capturing the asymmetry between pos-
itive and negative A in Fig. 8-6. The resulting problem is equivalent to a free-particle

Schroedinger equation on R E [0, L] and r E [0, oo] with mixed boundary conditions at
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r = 0. Using Laplace transformation in R, we find

( = 0) = O(R = L,r = 0) = e, 2erfc(u), (D.14)

where erfc is the complementary error function and

cov/ODODB
U = . (D. 15)

2(1 - i2,)3/2

This formula was used to make the solid black curves in Figs. 8-6. At small u, we have

(r = 0) - 1 = - + O(u 2 ), which, for JAI > F, gives arg[4(0) - 1] = ±r/4 + arg(co)

for A 5 0.

Within the 6-function approximation and by further assuming that A > F, we obtain

a real (negative) mass and a real (positive) potential. To get insight into the role of the

bound state, we solve for the dynamics in this case analytically:

?(R, r) = Ob(R, r) + 0,(R, r), (D.16)

where 4b and 0, are the contributions of the bound state and the scattering states,

respectively,

/b(R, r) = 2e e-K1ri8, 2 RLA/(ODF), (D.17)

4(R,r) = dki(bk 1) (eiklrl + bkeikirl) ei8k2 RLA/(ODr), (D.18)
0 27k

K = co(ODF/A)2fB/(16L 2 ) and bk = (ik + n)/(ik - K). Taking OD = 22, A = 14 MHz,

and Q, = 10 MHz, the condition KFB ~ 1/14 < 1 ensures that the extent of the bound

state is indeed much wider than the blockade radius justifying the 6-function approxi-

mation. For the case of a square well, <b(0,,r), ?4'(0,r), and / (L, r), 48 (L, r), |0/(L, r)12

are shown in Fig. 8-7. Within this solution, the observed bunching can be understood as

resulting from the relative phase evolution between the bound and the scattering states.

For the parameters given above, both terms in Eq. (D.16) contribute to the superpois-

sonian feature 1412 > 0 at r = 0. The bound state Ob acquires a phase and becomes

the dominant contribution to the imaginary part of 4. The superposition of scattering
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states 0, starts with a dip (because the bound-state contribution is subtracted), but its

phase evolution "fills in" the dip associated with the real part of b, while contributing

very little to the imaginary part, as visualized in Fig. 8-7. A combination of both the real

and imaginary parts of 0 results in the bunching feature of 1012 . Therefore, consistent

with a simple intuition, the superpoissonian g(')(0) is indeed driven by the bound-state

formation.

D.2 Relation between measurements and the spatial

Schroedinger equation

As in Appendix C, under the approximation of a homogeneous medium, the intuition we

have just developed for the region of the z1-z2 plane where both photons are inside the

medium is not sufficient for computing 4(T # 0). Indeed, one has to use this solution to

obtain the boundary condition to the problem in the region where one photon is inside

the medium while the other photon is already outside.The latter problem is equivalent

to the retrieval from the medium of a spin-wave (defined along zi = L) corresponding

to the second excitation (see, for example, Eq. (23) in Ref. [208]). While at A = 0 and

OD > 1, the retrieval can be described in terms of simple rescaling by the group velocity

Vg (provided EIT bandwidth effects are ignored), at nonzero A the situation is more

complicated [208]. At the same time, the theoretical prediction shown in Fig. 8-7 of the

main text (obtained with EE(R = L, vgT) calculated from Eq. (D.8) using the boundary

conditions EE(R = 0, r) = EE(R, r = ±oo) = a2 ) is in a good qualitative agreement with

both the measured 0(r) and the full calculations described above. We emphasize that this

comparison can only be interpreted qualitatively, especially at large photon separations,

since it (1) assumes simple group velocity propagation and (2) corresponds to a read out

of the second excitation along R = L instead of z, = L. The comparison is, however,

better than one might naively expect since the two approximations partially compensate

for each other as they, respectively, underestimate and overestimate the mass-induced

broadening of the second excitation.
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Figure D-2: Variation of the potential well with two-photon detuning. For A =

18 MHz, Q. = 10 MHz, -y = 500 kHz, 6 = 0 (solid blue) and 6 = 250 kHz (dashed red),
we plot Re[V(r)]. Moving from 6 = 0 towards the Raman resonance at 6 = 1.3 MHz
Q/(4A) makes the potential well deeper by shifting the r> fB baseline.

D.3 Engineering the two-photon potential with a non-

zero Raman detuning

While we focused so far on the case of 6 = - = 0, let us briefly consider the case of nonzero

6 and -y. To get a qualitative insight, let us assume that 6 and -y are small enough that

the approximations leading to Eq. (D.8) still hold. Then Eqs. (D.9,D.11) are modified to

1 4L 2(A + 26) *C (Q)\ 2 ( 26 + i7y
2r~~r 0 F + i (I + +) -)+i V(rf -A.92i(r) OD F2(A + 2) +J iI

2(A = 2)+ i( + -)+ . (D.20)
IF IF 2F(y - i26) + iQ2(r/r)6

Since 161, -Q, < JAI, the mass is affected by changes in 6 only weakly. At the same

time, the potential U(r) is affected substantially by changes in 6. Specifically, we observe

(Fig. D-2) that moving towards (away from) the Raman absorption peak at 6 Q/(4A)

makes the well deeper (shallower) by shifting the r> fB baseline, which implies tighter

(weaker) binding of photons, and resulting in more (less) bunching, consistent with the

experimental observations in Fig. 8-8.
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