2,877 research outputs found

    Optimal control for halo orbit missions

    Get PDF
    This paper addresses the computation of the required trajectory correction maneuvers (TCM) for a halo orbit space mission to compensate for the launch velocity errors introduced by inaccuracies of the launch vehicle. By combiningdynamical systems theory with optimal control techniques, we produce a portrait of the complex landscape of the trajectory design space. This approach enables parametric studies not available to mission designers a few years ago, such as how the magnitude of the errors and the timingof the first TCM affect the correction ΔV. The impetus for combiningdynamical systems theory and optimal control in this problem arises from design issues for the Genesis Discovery mission being developed for NASA by the Jet Propulsion Laboratory

    Hyperextended Scalar-Tensor Gravity

    Get PDF
    We study a general Scalar-Tensor Theory with an arbitrary coupling funtion ω(ϕ)\omega (\phi ) but also an arbitrary dependence of the ``gravitational constant'' G(ϕ)G(\phi ) in the cases in which either one of them, or both, do not admit an analytical inverse, as in the hyperextended inflationary scenario. We present the full set of field equations and study their cosmological behavior. We show that different scalar-tensor theories can be grouped in classes with the same solution for the scalar field.Comment: latex file, To appear in Physical Review

    On the effects of hydrocarbon and sulphur-containing compounds on the CCN activation of combustion particles

    No full text
    International audienceThe European PartEmis project (''Measurement and prediction of emissions of aerosols and gaseous precursors from gas turbine engines'') was focussed on the characterisation and quantification of exhaust emissions from a gas turbine engine. A comprehensive suite of aerosol, gas and chemi-ion measurements were conducted under different combustor operating conditions and fuel sulphur concentrations. Combustion aerosol characterisation included on-line measurements of mass and number concentration, size distribution, mixing state, thermal stability of internally mixed particles, hygroscopicity, cloud condensation nuclei (CCN) activation potential, and off-line analysis of chemical composition. Modelling of CCN activation of combustion particles was conducted using microphysical and chemical properties obtained from the measurements as input data. Based on this unique data set, the role of sulphuric acid coatings on the combustion particles, formed in the cooling exhaust plume through either direct condensation of gaseous sulphuric acid or coagulation with volatile condensation particles nucleating from gaseous sulphuric acid, and the role of the organic fraction for the CCN activation of combustion particles was investigated. It was found that particles containing a large fraction of non-volatile organic compounds grow significantly less at high relative humidity than particles with a lower content of non-volatile OC. Also the effect of the non-volatile OC fraction on the potential CCN activation is significant. While a coating of water-soluble sulphuric acid increases the potential CCN activation, or lowers the activation diameter, respectively, the non-volatile organic compounds, mainly found at lower combustion temperatures, can partially compensate this sulphuric acid-related enhancement of CCN activation of carbonaceous combustion aerosol particles

    On the effects of organic matter and sulphur-containing compounds on the CCN activation of combustion particles

    Get PDF
    The European PartEmis project (Measurement and prediction of emissions of aerosols and gaseous precursors from gas turbine engines) was focussed on the characterisation and quantification of exhaust emissions from a gas turbine engine. The combustion aerosol characterisation included on-line measurements of mass and number concentration, size distribution, mixing state, thermal stability of internally mixed particles, hygroscopicity, cloud condensation nuclei (CCN) activation potential, and off-line analysis of chemical composition. Based on this extensive data set, the role of sulphuric acid coating and of the organic fraction of the combustion particles for the CCN activation was investigated. Modelling of CCN activation was conducted using microphysical and chemical properties obtained from the measurements as input data. Coating the combustion particles with water-soluble sulphuric acid, increases the potential CCN activation, or lowers the activation diameter, respectively. The adaptation of a K&#246;hler model to the experimental data yielded coatings from 0.1 to 3 vol-% of water-soluble matter, which corresponds to an increase in the fraction of CCN-activated combustion particles from &#x2264;10<sup>&minus;4</sup> to &#x224C;10<sup>&minus;2</sup> at a water vapour saturation ratio S<sub>w</sub>=1.006. Additional particle coating by coagulation of combustion particles and aqueous sulphuric acid particles formed by nucleation further reduces the CCN activation diameter. In contrast, particles containing a large fraction of non-volatile organic compounds grow significantly less at high relative humidity than particles with a lower content of non-volatile OC. The resulting reduction in the potential CCN activation with an increasing fraction of non-volatile OC becomes visible as a trend in the experimental data. While a coating of water-soluble sulphuric acid increases the potential CCN activation, or lowers the activation diameter, respectively, the non-volatile organic compounds, mainly found at lower combustion temperatures, can partially compensate this sulphuric acid-related enhancement of CCN activation of carbonaceous combustion aerosol particles

    Isotropization of Bianchi-Type Cosmological Solutions in Brans-Dicke Theory

    Get PDF
    The cosmic, general analitic solutions of the Brans--Dicke Theory for the flat space of homogeneous and isotropic models containing perfect, barotropic, fluids are seen to belong to a wider class of solutions --which includes cosmological models with the open and the closed spaces of the Friedmann--Robertson--Walker metric, as well as solutions for models with homogeneous but anisotropic spaces corresponding to the Bianchi--Type metric clasification-- when all these solutions are expressed in terms of reduced variables. The existence of such a class lies in the fact that the scalar field, Ď•\phi, times a function of the mean scale factor or ``volume element'', a3=a1a2a3a^3 = a_1 a_2 a_3, which depends on time and on the barotropic index of the equation of state used, can be written as a function of a ``cosmic time'' reduced in terms of another function of the mean scale factor depending itself again on the barotropic index but independent of the metrics here employed. This reduction procedure permites one to analyze if explicitly given anisotropic cosmological solutions ``isotropize'' in the course of their time evolution. For if so can happen, it could be claimed that there exists a subclass of solutions that is stable under anisotropic perturbations.Comment: 15 pages, Late

    Chaotic Inflationary Universe on Brane

    Full text link
    The chaotic inflationary model of the early universe, proposed by Linde is explored in the brane world considering matter described by a minimally coupled self interacting scalar field. We obtain cosmological solutions which admit evolution of a universe either from a singularity or without a singularity. It is found that a very weakly coupled self-interacting scalar field is necessary for a quartic type potential in the brane world model compared to that necessary in general relativity. In the brane world sufficient inflation may be obtained even with an initial scalar field having value less than the Planck scale. It is found that if the universe is kinetic energy dominated to begin with, it transits to an inflationary stage subsequently.Comment: 13 pages, no fig., accepted in Physical Review

    Halo orbit mission correction maneuvers using optimal control

    Get PDF
    This paper addresses the computation of the required trajectory correction maneuvers for a halo orbit space mission to compensate for the launch velocity errors introduced by inaccuracies of the launch vehicle. By combining dynamical systems theory with optimal control techniques, we are able to provide a compelling portrait of the complex landscape of the trajectory design space. This approach enables automation of the analysis to perform parametric studies that simply were not available to mission designers a few years ago, such as how the magnitude of the errors and the timing of the first trajectory correction maneuver affects the correction ΔV. The impetus for combining dynamical systems theory and optimal control in this problem arises from design issues for the Genesis Discovery Mission being developed for NASA by the Jet Propulsion Laboratory

    Toda chains with type A_m Lie algebra for multidimensional m-component perfect fluid cosmology

    Get PDF
    We consider a D-dimensional cosmological model describing an evolution of Ricci-flat factor spaces, M_1,...M_n (n > 2), in the presence of an m-component perfect fluid source (n > m > 1). We find characteristic vectors, related to the matter constants in the barotropic equations of state for fluid components of all factor spaces. We show that, in the case where we can interpret these vectors as the root vectors of a Lie algebra of Cartan type A_m=sl(m+1,C), the model reduces to the classical open m-body Toda chain. Using an elegant technique by Anderson (J. Math. Phys. 37 (1996) 1349) for solving this system, we integrate the Einstein equations for the model and present the metric in a Kasner-like form.Comment: LaTeX, 2 ps figure

    Procedimentos para aplicação de injeções em equinos: cuidados para evitar acidentes

    Get PDF
    A aplicação de medicamentos injetáveis em equinos pode ser feita por um técnico habilitado ou até mesmo pelo proprietário do animal, desde que sejam respeitadas as recomendações do médico veterinário, no que se refere à droga utilizada, dose e via medicamentosa prescrita por esse profissional.bitstream/CPAP/56030/1/CT69.pdfFormato eletrônic
    • …
    corecore