31 research outputs found
Stress-Induced GSK3 Regulates the Redox Stress Response by Phosphorylating Glucose-6-Phosphate Dehydrogenase in Arabidopsis.
Diverse stresses such as high salt conditions cause an increase in reactive oxygen species (ROS), necessitating a redox stress response. However, little is known about the signaling pathways that regulate the antioxidant system to counteract oxidative stress. Here, we show that a Glycogen Synthase Kinase3 from Arabidopsis thaliana (ASKα) regulates stress tolerance by activating Glc-6-phosphate dehydrogenase (G6PD), which is essential for maintaining the cellular redox balance. Loss of stress-activated ASKα leads to reduced G6PD activity, elevated levels of ROS, and enhanced sensitivity to salt stress. Conversely, plants overexpressing ASKα have increased G6PD activity and low levels of ROS in response to stress and are more tolerant to salt stress. ASKα stimulates the activity of a specific cytosolic G6PD isoform by phosphorylating the evolutionarily conserved Thr-467, which is implicated in cosubstrate binding. Our results reveal a novel mechanism of G6PD adaptive regulation that is critical for the cellular stress response
Murein and pseudomurein cell wall binding domains of bacteria and archaea—a comparative view
The cell wall, a major barrier protecting cells from their environment, is an essential compartment of both bacteria and archaea. It protects the organism from internal turgor pressure and gives a defined shape to the cell. The cell wall serves also as an anchoring surface for various proteins and acts as an adhesion platform for bacteriophages. The walls of bacteria and archaea are mostly composed of murein and pseudomurein, respectively. Cell wall binding domains play a crucial role in the non-covalent attachment of proteins to cell walls. Here, we give an overview of the similarities and differences in the biochemical and functional properties of the two major murein and pseudomurein cell wall binding domains, i.e., the Lysin Motif (LysM) domain (Pfam PF01476) and the pseudomurein binding (PMB) domain (Pfam PF09373) of bacteria and archaea, respectively
Contribution of NFP LysM Domains to the Recognition of Nod Factors during the Medicago truncatula/Sinorhizobium meliloti Symbiosis
The root nodule nitrogen fixing symbiosis between legume plants and soil bacteria called rhizobia is of great agronomical and ecological interest since it provides the plant with fixed atmospheric nitrogen. The establishment of this symbiosis is mediated by the recognition by the host plant of lipo-chitooligosaccharides called Nod Factors (NFs), produced by the rhizobia. This recognition is highly specific, as precise NF structures are required depending on the host plant. Here, we study the importance of different LysM domains of a LysM-Receptor Like Kinase (LysM-RLK) from Medicago truncatula called Nod factor perception (NFP) in the recognition of different substitutions of NFs produced by its symbiont Sinorhizobium meliloti. These substitutions are a sulphate group at the reducing end, which is essential for host specificity, and a specific acyl chain at the non-reducing end, that is critical for the infection process. The NFP extracellular domain (ECD) contains 3 LysM domains that are predicted to bind NFs. By swapping the whole ECD or individual LysM domains of NFP for those of its orthologous gene from pea, SYM10 (a legume plant that interacts with another strain of rhizobium producing NFs with different substitutions), we showed that NFP is not directly responsible for specific recognition of the sulphate substitution of S. meliloti NFs, but probably interacts with the acyl substitution. Moreover, we have demonstrated the importance of the NFP LysM2 domain for rhizobial infection and we have pinpointed the importance of a single leucine residue of LysM2 in that step of the symbiosis. Together, our data put into new perspective the recognition of NFs in the different steps of symbiosis in M. truncatula, emphasising the probable existence of a missing component for early NF recognition and reinforcing the important role of NFP for NF recognition during rhizobial infection
Evaluating Geospatial Data Adequacy for Integrated Risk Assessments: A Malaria Risk Use Case
International policy and humanitarian guidance emphasize the need for precise, subnational malaria risk assessments with cross-regional comparability. Spatially explicit indicator-based assessments can support humanitarian aid organizations in identifying and localizing vulnerable populations for scaling resources and prioritizing aid delivery. However, the reliability of these assessments is often uncertain due to data quality issues. This article introduces a data evaluation framework to assist risk modelers in evaluating data adequacy. We operationalize the concept of “data adequacy” by considering “quality by design” (suitability) and “quality of conformance” (reliability). Based on a use case we developed in collaboration with Médecins Sans Frontières, we assessed data sources popular in spatial malaria risk assessments and related domains, including data from the Malaria Atlas Project, a healthcare facility database, WorldPop population counts, Climate Hazards group Infrared Precipitation with Stations (CHIRPS) precipitation estimates, European Centre for Medium-Range Weather Forecasts (ECMWF) precipitation forecast, and Armed Conflict Location and Event Data Project (ACLED) conflict events data. Our findings indicate that data availability is generally not a bottleneck, and data producers effectively communicate contextual information pertaining to sources, methodology, limitations and uncertainties. However, determining such data’s adequacy definitively for supporting humanitarian intervention planning remains challenging due to potential inaccuracies, incompleteness or outdatedness that are difficult to quantify. Nevertheless, the data hold value for awareness raising, advocacy and recognizing trends and patterns valuable for humanitarian contexts. We contribute a domain-agnostic, systematic approach to geodata adequacy evaluation, with the aim of enhancing geospatial risk assessments, facilitating evidence-based decisions
A poly(A) ribonuclease controls the cellotriose-based interaction between Piriformospora indica and its host Arabidopsis
Piriformospora indica, an endophytic root-colonizing fungus, efficiently promotes plant growth and induces resistance to abiotic stress and biotic diseases. The fungal cell wall extract induces cytoplasmic calcium [Ca2+]cyt elevation in host plant roots. Here, we show that an elici-tor-active cell wall moiety, released by P. indica into the medium, is cellotriose (CT). CT in-duces a mild defense-like response including the production of reactive oxygen species, changes in membrane potentials and the expression of genes involved in growth regulation and root development. CT based [Ca2+]cyt elevation in Arabidopsis roots does not require BAK1 coreceptor, or the putative Ca2+ channels TPC1, GLR3.3, -2.4 and -2.5 and operates synergistically with the elicitor chitin. We identified an ethylmethane-sulfonate-induced mu-tant ([Ca2+]cyt elevation mutant, cycam) impaired in response to CT, cellooligomers (n = 2, 4-7), but not to chitooligomers (n = 4-8) in roots. The mutant contains a single nucleotide ex-change in the gene encoding for a poly(A) ribonuclease (AtPARN, At1g55870) which de-grades poly(A) tails of specific mRNAs. The wild-type PARN cDNA, expressed under the control of a 35S promoter, complements the mutant phenotype. Our finding of cellotriose as a novel chemical mediator might help to understand the complex P. indica-plant mutual rela-tionship in beneficial symbiosis
Towards improved adaptation action in Europe: Policy recommendations from the UNCHAIN project
Policymakers can make adaptation "smarter" by using the Impact Chain approach to analyse both conventional local climate risks and lesser well-known transboundary climate risks. • Policymakers should embrace uncertainties by applying a reflect-then-act rather than the predict-then-act approach; by including socioeconomic scenarios for a range of possible developments, from likely to unanticipated; and by ensuring transparency in communications. Below we summarize our policy-relevant insights and recommendations for the European Commission and EU member states