5 research outputs found

    An integrated environmental and human systems modeling framework for Puget Sound restoration planning

    Get PDF
    Local, state, federal, tribal and private stakeholders have committed significant resources to restoring Puget Sound’s terrestrial-marine ecosystem. Though jurisdictional issues have promoted a fragmented approach to restoration planning, there is growing recognition that a more coordinated systems-based restoration approach is needed to achieve recovery goals. This presentation describes our collaborative effort to develop and apply an integrated environmental and human systems modeling framework for the Puget Sound Basin, inclusive of all marine and land areas (1,020 and 12,680 sq. mi.). Our goal is to establish a whole-basin systems modeling framework that dynamically simulates biophysical interactions and transfers (water, nutrients, contaminants, biota) across terrestrial-marine boundaries. The core environmental models include a terrestrial ecohydrological model (VELMA), an ocean circulation and biogeochemistry model (Salish Sea Model), and an ocean food web model (Atlantis). This environmental subsystem will be linked with an agent-based modeling subsystem (e.g., Envision) that allows human decision-makers to be represented in whole-basin simulations. The integrated environmental and human systems framework aims to facilitate discourse among different stakeholders and decision makers (agents) and enable them play out the ecological, social and economic consequences of alternative ecosystem restoration choices. All of these models are currently being applied in Puget Sound, but they have not yet been integrated. The linked models will better capture the propagation of human impacts throughout the terrestrial-marine ecosystem, and thereby provide a more effective decision support tool for addressing restoration of high priority environmental endpoints, such as the Vital Signs identified by the Puget Sound Partnership (http://www.psp.wa.gov/vitalsigns/). Our overview will include examples of existing stand-alone model applications, and conceptual plans for linking models across terrestrial-marine boundaries. The Puget Sound multi-model framework described here can potentially be expanded to address the entire Salish Sea transboundary ecosystem (https://www.eopugetsound.org/maps/salish-sea-basin-and-water-boundaries)

    Quantifying ecosystem service tradeoffs in response to alternative land use and climate scenarios: Pacific Northwest applications of the VELMA ecohydrological model

    Get PDF
    Scientists, policymakers, community planners and others have discussed ecosystem services for decades, however, society is still in the early stages of developing methodologies to quantify and value the goods and services that ecosystems provide. Essential to this goal are highly integrated models that can be used to define policy and management strategies for entire ecosystems, not just individual components. We developed the VELMA ecohydrological model to help address this need. VELMA links a land surface hydrologic model with a terrestrial biogeochemistry model in a spatially-distributed framework to simulate the integrated responses of vegetation, soil, and water resources to changes in land use and climate. Here we briefly describe watershed-scale applications of VELMA conducted in Oregon and the Puget Sound Basin in partnership with community and governmental organizations. Our goal is to evaluate how alternative policy, land use and climate scenarios affect tradeoffs among ecosystem services – specifically, provisioning services (water; food from land and sea; fiber), supporting services (cycling of water and nutrients; habitat for fish, shellfish, wildlife), regulating services (climate; peak and low flows), and cultural services (recreational and spiritual pursuits). A major focus is to assess the effectiveness of natural and engineered green infrastructure (riparian buffers etc.) for protecting water quality of coastal and inland waters. Products of this work include (1) alternative-future scenarios capturing stakeholder-relevant choices and drivers of change; (2) tools for mapping production of ecosystem goods and services under current and projected conditions; and (3) tools for evaluating ecosystem service tradeoffs so that natural capital can be more fully accounted for in alternative-future decision scenarios. We are using these products in a participatory planning approach that integrates researchers, stakeholders and decision makers in the process of identifying drivers, ecosystem services of concern, and solutions for a more sustainable future. For example, can optimal “decision paths” be identified for restoring the ecosystem services needed to sustainably support communities dependent on resource-based economies and traditions, such as agriculture, forestry, and fishing

    Modeling Fecal Bacteria in Oregon Coastal Streams Using Spatially Explicit Watershed Characteristics

    Get PDF
    Pathogens, such as Escherichia coli and fecal coliforms, are causing the majority of water quality impairments in U.S., making up ~87% of this grouping\u27s violations. Predicting and characterizing source, transport processes, and microbial survival rates is extremely challenging, due to the dynamic nature of each of these components. This research built upon current analytical methods that are used as exploratory tools to predict pathogen indicator counts across regional scales. Using a series of non-parametric methodologies, with spatially explicit predictors, 6657 samples from non-estuarine lotic streams were analyzed to make generalized predictions of regional water quality. 532 frequently sampled sites in the Oregon Coast Range Ecoregion, were parsed down to 93 pathogen sampling sites in effect to control for spatial and temporal biases. This generalized model was able to provide credible results in assessing regional water quality, using spatial techniques, and applying them to infrequently or unmonitored catchments. This model\u27s 56.5% explanation of variation, was comparable to other researchers\u27 regional assessments. This research confirmed linkages to land uses related to anthropogenic activities such as animal operations and agriculture, and general riparian conditions

    Urban watershed modeling in Seattle, Washington using VELMA: a spatially explicit ecohydrological watershed model

    No full text
    Urban watersheds are notoriously difficult to model due to their complex, small-scale combinations of landscape and land use characteristics including impervious surfaces that ultimately affect the hydrologic system. We utilized EPA’s Visualizing Ecosystem Land Management Assessments (VELMA) model, which is a spatially explicit (i.e., gridded) ecohydrological watershed model, to simulate watershed-scale hydrologic discharge and nutrient concentrations for several urban stream systems in Seattle, Washington, including Thornton Creek, Piper’s Creek, Longfellow Creek, and Taylor Creek. A 1-meter land use classification is used to distinguish four cover types, including roads, buildings, trees, and grass. After model calibration and validation, we construct scenarios of hypothetical green roof implementations and simulate their impacts on watershed-scale discharge. Results show that VELMA is capable of simulating the impacts of targeted green infrastructure management practices to reduce peak stream flow events. These results suggest that VELMA can facilitate the prioritization of urban water infrastructure to improve water quality in urban streams leading to Puget Sound

    Integrated decision support tools for Puget Sound salmon recovery planning

    No full text
    We developed a set of tools to provide decision support for community-based salmon recovery planning in Salish Sea watersheds. Here we describe how these tools are being integrated and applied in collaboration with Puget Sound tribes and community stakeholders to address restoration of hydrological and ecological processes critical to salmon recovery, and more broadly, to the functioning of entire watersheds and the ecosystem services they provide. For ongoing case studies in the Nisqually River and Tolt River watersheds in Washington, we are using a spatially-distributed watershed simulator – VELMA (Visualizing Ecosystem Land Management Assessments) – to quantify long-term effects of alternative forest management and climate scenarios on key salmon habitat variables, including peak and low flows, in-stream wood, fine sediment in spawning beds, and riparian condition. Stream temperature will be simulated using Penumbra, a new stream shade and temperature model that is being integrated with VELMA. VELMA/Penumbra stream habitat outputs will be used to drive the EDT (Ecosystem Diagnosis and Treatment) fish habitat model to simulate habitat potential and salmon population responses to the forest management and climate scenarios. A 3-D visualization tool (VISTAS; Cushing et al. 2009) is being used to summarize and communicate model outcomes in an intuitive way. An important goal of the case studies is to identify community-based best management practices for mitigating and adapting to projected changes in climate. For example, where and what kinds of in-stream, riparian and upland restoration practices will be most effective for improving cold water refuges, spawning and rearing habitat, and hydrologic flow regimes (higher summer flows and lower peak flows)? Model results are also being used to help address other community concerns, such as the establishment of a Nisqually Community Forest that sustainably supports forest-sector jobs, recreation and tourism
    corecore