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ABSTRACT 

 

Pathogens, such as Escherichia coli and fecal coliforms, 

are causing the majority of water quality impairments in U.S., 

making up ~87% of this grouping’s violations.  Predicting and 

characterizing source, transport processes, and microbial 

survival rates is extremely challenging, due to the dynamic 

nature of each of these components.  This research built upon 

current analytical methods that are used as exploratory tools 

to predict pathogen indicator counts across regional scales. 

Using a series of non-parametric methodologies, with 

spatially explicit predictors, 6657 samples from non-

estuarine lotic streams were analyzed to make generalized 

predictions of regional water quality.  532 frequently 

sampled sites in the Oregon Coast Range Ecoregion, were parsed 

down to 93 pathogen sampling sites in effect to control for 

spatial and temporal biases.  This generalized model was able 

to provide credible results in assessing regional water 

quality, using spatial techniques, and applying them to 

infrequently or unmonitored catchments.  This model’s 56.5 % 

explanation of variation, was comparable to other researches 

regional assessments.  This research confirmed linkages to 
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land uses related to anthropogenic activities such as animal 

operations and agriculture, and general riparian conditions.       
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INTRODUCTION 

For decades, fecal indicator bacteria have been used to 

assess water quality for pathogen contamination and 

violations of state and federal water quality criteria to 

protect designated uses (ODEQ, 2010).  Escherichia coli (E. 

coli) and fecal coliform are often used as indicator bacteria, 

and compromise the largest group of pollutants that are 

threatening or causing water quality impairments in the U.S. 

(USEPA, 2012a).   All water bodies within the U.S. that have 

been tested are to be reported by the states to the 

Environmental Protection Agency (EPA) for all water quality 

criteria excursions as required by Sections 305(b) and 303(d) 

of the Clean Water Act.  However, only 27% of river and stream 

miles have been reported on by states (USEPA, 2012a).  Of 

this subset of tested stream and river waters, 54% of them 

are either listed as threatened or impaired for one or more 

water quality criteria.  Pathogens, such as E. coli and fecal 

coliforms, make up ~87% of these impairments, making them the 

largest impairment group (USEPA, 2012a).  Public heath can be 

protected through efficient detection and prediction of 

indicator bacteria, but unfortunately even the most modern 

water quality models and methods are limited by the 

characterization of the watershed, and the particular 
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processes within a specific basin (Ferguson et al., 2003; 

Jamieson et al., 2004; Benham et al., 2006; Pachepsky et al., 

2006; Oliver et al., 2009).  With the majority of water bodies 

in the U.S. being either in violation of current standards or 

completely untested, generic regional cross-section models 

that predict fecal contamination would greatly aid natural 

resource managers in protecting public health (Smith, 1997; 

Pachepsky et al., 2006; Kay et al., 2010; Crowther et al., 

2011). 

Predicting and characterizing source, transport 

processes, and microbial survival rates is extremely 

challenging, due to the dynamic nature of each of these 

components (Jamieson et al., 2004).   Point sources such as 

wastewater treatment facilities are highly regulated for 

bacteria count effluence, but regulating non-point sources is 

difficult because livestock and wildlife manures vary greatly 

depending on animal type and application rate (Jamison et 

al., 2002).  Concrete knowledge on the survivability and 

transport of indicator pathogens is also confounded by a 

number of environmental factors, such as soil moisture 

content and the pollutant’s ability to move overland to 

streams (Desmarais et al., 2002; Mossaddeghi et al., 2008). 

Efforts in waste water treatment and source control have 
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greatly reduced fecal contamination in both urban and rural 

areas, however, many streams remain in violation of water 

quality standards.   Treatment, elimination, and control of 

microbial contamination from point sources are much easier to 

accomplish than from disperse non-point sources.  Regardless, 

water bodies that have been tested for indicator bacteria and 

are in violation of State or federal criteria, leads to a 

waterbody being listed on the EPA’s 303(d) list.  After which, 

a Total Maximum Daily Load (TMDL) is developed for the 

“impaired” waterbody.  Some of the best solutions that meet 

the needs of TMDLs are developed from complex process based 

models which incorporate source characterization and future 

water quality protection (Pachepsky et al., 2006). State of 

the art mechanistic models are limited by their ability to 

accurately describe life cycles and loading of bacteria, 

hydrologic processes, climate conditions, and other physical 

factors that influence fecal contamination in streams 

(Sadeghi & Arnold, 2002: Benham et al., 2006 ; Kim et al., 

2007).  For instance, two widely used mechanistic models, 

Soil and Water Assessment Tool (SWAT) and Hydrological 

Simulation Program—Fortran (HSPF), use profoundly different 

methodologies to simulate processes like manure release and 

hydrology (Chin et al., 2009).  Even though process-based 
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models are the best tools water-quality managers have, 

empirical and statistical exploration of pathogen 

relationships to environmental variables can assist in their 

development and deployment (Crowther et al., 2010; Wilkinson, 

2010; Wilkes, 2011) 

Simple statistical loading models can't embody complex 

loading, fate, transport, and timing processes that 

mechanistic water quality models can (Wilkinson, 2010).  They 

can however advance the knowledge and understanding of 

environmental factors that drive contaminant loading and 

fecal indicator violations (Kay et al., 2010; New Zealand 

Ministry for the Environment, 2010).  Kay et al. (2010) used 

empirical models to determine source appointment between 

agricultural and sewage source of fecal indicator violations.  

The New Zealand Ministry for the Environment (NZME) (2010) 

also used statistical modeling to understand watershed 

characteristics that influence fecal indicator violations.    

Many other people and organizations are turning to empirical 

and other black box modeling tools, used to explore unknowns 

in the structure of the data and to interpret pathogen sources 

in relation to stream water-quality (Wilkes et al. 2009; 

Crowther 2011; Hevesi et al., 2011).  These modeling tools 

use several methods to generalize a watershed's ability to 
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have pathogen contamination, or to predict specific bacteria 

counts of unmonitored or infrequently sampled streams.  These 

statistical functions are derived from spatially-generated 

watershed variables, instream physicochemical factors, 

geology, geography, hydrology, and other anthropogenic and 

land use variables that are known to influence pathogen 

content (Wilkes et al., 2009; NZME, 2010; Crowther, 2011; 

Hevesi, 2011). 

Oregon is not unique in its need for understanding the 

role environmental and other factors relate to violations of 

fecal indicator organisms, but it is unique in its regional 

characterization of those variables.  In 1988 the Oregon 

Department of Environmental Quality (ODEQ) set out to devise 

a strategy to prioritize the state’s water bodies based in 

part on ecoregions (Clark et al., 1991).  These researchers 

stated that variations in water quality would be better served 

by recognizing similarities and differences between 

ecoregions rather than across watershed boundaries.  

Depending on the size of a delineated watershed, a stream or 

river may flow through many distinct geology types, 

vegetation, and other natural phenomena that vary greatly 

from start to finish.  These differences in ecoregions 

fundamentally affect water quality. Therefore transferring 
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already developed water quality models between different 

regional watersheds is not possible.  It is difficulties like 

these that arise when deriving modeling inputs and 

characterizing the fate and transport of pathogen 

contaminants such as fecal bacteria within an unspecified 

watershed.  But, generalized regional statistical modeling 

techniques such as those used by the U.S. Geological Survey 

(USGS) could be informative and useful in Oregon's quest to 

solve its water-quality problems (Smith et al., 1997). 

   The objective of this study is to build upon current 

analytical methods that are used as exploratory tools to 

predict pathogen indicator counts across the Coast Range 

ecoregion of Oregon. This region of Oregon has been the focus 

of many TMDL’s, and ODEQ (2013) is currently implementing 

several more in the region.  Between the year 2000 and 2010, 

roughly 16,400 water quality samples from 532 stations were 

analyzed for E. coli or fecal coliforms in the coastal range 

streams of Oregon (ODEQ, 2012). The state of Oregon employs 

a monitoring plan that is in part probabilistic and site 

targeted, while volunteer monitoring groups are less random 

and more targeted. However, both develop high quality data 

about the conditions of the state’s waters. These samples are 

neither completely random nor spatially comprehensive in 
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their placement, but a reasonable regional assessment can be 

made from these data.  The gap in knowledge is not in how to 

apply rigorous TMDL methodology and solutions to water 

quality issues, but how to address sparse or nonexistent 

sampling and use cost effective ways to characterize regional 

water quality based on publicly available data.  I hypothesize 

that water quality violations of in-stream fecal bacteria are 

a function of land use, natural factors, and other spatial 

variables in the watersheds.  This generic model will include 

both sources of indicator bacteria and factors that affect 

concentration, fate and transport within a watershed. These 

methods can also be used to predict intensity and identify 

key watershed variables that drive water-quality violations.  

It is also my goal to help current watershed management to: 

1) Identify likely areas of high pathogen bacteria 

concentrations in watersheds with infrequent to zero 

monitoring. 2) Develop generalized models that can be used a 

priori to expensive process-based water quality models. 3) 

Quantify likely impacts of future land-use, land-cover, and 

population change scenarios.  
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BACKGROUND  

Pathogen Source 

Pathogen bacteria, which are found in livestock manures, 

animal extracts, and humans, are currently causing numerous 

water quality violations across the world.  E. coli is a rod 

shaped, gram negative, enteric bacteria normally found in the 

intestines of warm blooded organisms. As such, it is used as 

a general indicator of pathogen contamination in waterbodies 

(EPA, 2012a).  Watershed sources of fecal coliforms can 

originate from any combination of urban, agricultural, 

residential, and natural origins (Figure 1). From these 

sources, pathogens are then transported either directly or 

indirectly into streams via point source discharge, disperse 

overland flow, or direct deposition.  Conceptually, we might 

be better served by visualizing these inputs as either direct 

or indirect in nature, rather than the regulatory definitions 

of point and non-point sources to stream entry.  Direct 

contaminant deposition into a waterbody is possible through: 

agricultural livestock, wildlife, pets, human recreational 

activity, and rural and urban sewerages.  Other more easily 

accounted for direct sources of bacterial contamination are: 

combined sewer overflows, wastewater treatment plants, and 

permitted effluence.  While residential septic tanks and 
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straight pipes are more difficult to assess.  Indirectly, 

pathogens from these same generalized sources may be 

transported overland by hydrological related processes 

(Figure 1).  It is these non-point sources of pollution that 

makes prediction and characterization of pathogens difficult.   

In Paul and Meyer’s (2001) frequently cited review on 

urban streams, they noted the difficulties in characterizing 

both point and non-point sources of bacterial contamination.  

Under baseflow conditions, the USGS found that the Platte 

River near Denver, Colorado, waste water treatment plants 

(WWTP) contributed 69% to the river’s total flow (Dennehy et 

al., 1998). Other studies showed that storm events have 

increased instream bacteria counts 10 fold, and that storm 

drain sewers and stormwater had both human and animal fecal 

coliforms (Paul & Meyer, 2008). Genetic ribotyping is 

becoming a more common way of distinguishing sources of 

pathogen contamination. Wu et al. (2011) found spatial and 

temporal patterns in both human and wildlife sources of 

bacteria.  Residential areas had higher levels of human 

bacteria, while open areas were dominated by wildlife 

sources.  Genetic source characterization in urban streams 

also point to many other source types, such as domesticated 

animals (Paul & Meyer, 2008). 
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In agricultural lands, the primary source of fecal 

contamination is from grazing lands and livestock related 

production (Jamieson et al., 2004). In some rural areas 

livestock have unabated access to streams, and frequently 

manures are directly deposited into streams.   Bacteria counts 

in grazing lands have been shown to have 5 to 10 times higher 

levels of pathogens than non-grazed lands (Doran & Linn, 

1979). Confined feeding operations and other livestock 

operations are often under strict guidelines that regulate 

storage and disposal of manures, but are sometimes not 

enforced (K. Brannan ODEQ, personal communication, September 

23, 2011).  Applied manure sludges to land can create 

interesting lag times before bacteria are transported, and 

are highly variable between application sites and across 

particular watersheds (Meals et al., 2010).  A study in 

Tillamook Bay, Oregon found that the most probable sources of 

fecal contamination were from dairy operations and 

ineffective sewage treatment in this rural coastal watershed 

(Benhard et al., 2002). In addition, Benham et al. (2006) 

noted that some older homes in rural areas have straight pipes 

that connect residential sewage directly to streams. 
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Figure 1. Conceptual model of common watersh ed sources of in stream E. coli.
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Pathogen Transport 

 Indirect fate and transport of pathogens can be 

categorized in four ways: 1) absorption into soils, 2) 

migration through soils and into groundwaters 3) overland 

flow, and 4) bacteria die-off rates (Mossaddeghi et al., 

2008). Pronk et al. (2008) warned that water born contaminants 

can easily be transported through the unsaturated zones of 

karst aquifers to groundwater networks. While, most 

researches show that the majority of microorganisms travel by 

advection in overland flow (Muirhead, 2006). Numerous 

experiments have been made to study how E. coli and other 

organisms are transported through soil and flow overland. 

Transport biotracer and artificial biopore experiments, are 

some of the recent methods to determine the leaching quantity 

and timing of fecal coliform bacteria in soils (Kuczynska, 

2003; Kouznetsova, et al., 2007; Guzman & Fox, 2009; Boyer, 

et al., 2009). Boyer et al. (2009) used various intact soil 

samples extracted in the field and returned them to the lab 

to determine how bacteria move through macroporous soil to 

the water table (2009). Guzman and Fox (2009) are using 

artificial biopores to measure pathogen transport 

interactions between micropore and mesopores. Other 

researchers are using immunomagnetic 
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electrochemiluminescence with surface applied biotracers, 

along with downstream water quality monitoring and down 

watershed soil sampling to quantify bacteria movement (Abu-

Ashour & Lee, 2000; Kuczynska, 2003). Migration of bacteria 

through soils requires E. coli to overcome soil adhesion 

forces, mechanical pore filtration, and straining through 

soil mediums (Boyer et al., 2008).  
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Pathogen Fate 

Along with transport studies, other researches show that 

during the indirect overland transport the fate of bacteria 

are influenced by a myriad of abiotic conditions and other 

watershed characteristics (Figure 2) (Table 1). Often it is 

assumed that bacteria are transported in dissolved solution, 

as are other non-organic pollutants (Boyer & Kuczynska, 2008; 

Ponk et al., 2008). These various studies show that most fecal 

bacteria penetrate only the top 2 cm of the soil, and are 

almost entirely transported to the stream by surface runoff 

(Abu-Ashour & Lee, 2000; Kouznetsova, 2007).  Overland flow 

of pathogens to surface waterbodies is affected by both 

vegetation and the macroporous nature of the regions soil, 

thus affecting the timing and exposure to environmental 

factors that influence survival (Boyer & Kuczynska, 2008).  

Vegetation type and the size of riparian buffers zones will 

also influence fate and timing to streams. Distance from 

pathogen source and stream bank slope, in connection with 

precipitation events will determine timing to stream input 

and exposure of E. coli to abiotic influences (Jamieson et 

al., 2004).  Temperature, extreme dryness, soil moisture, and 

ultraviolet light have all been shown to affect bacteria 

transport and life cycles (Boyer & Kuczynska, 2008). Becker 
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et al. (2010) measured die-off rates of E. coli from dairy 

manure lagoons across a range of temperature treatments.  They 

found that bacteria growth rates increase from 4 °C to 23 °C, 

and that the E. coli die-off sharply as temperatures increase 

above 23 °C.   Differences in geology and soil texture have 

been shown to influence quantity and timing of stream 

contamination.  Bacteria attached to fine soils, like clays, 

have higher survival rates than when on coarser sandy soils, 

and is most probably related to moisture content in the soils 

(Mubiru, 2000). 

Once pathogens have been transported to streams, other 

abiotic and biotic processes influence their fate (Table 2).  

Water quality factors such as pH and salinity put osmotic and 

other stresses on bacteria, reducing their ability to survive 

(Rhodes & Kator, 1988). Bacteria transported to streams are 

typically attached to sediments, and resuspension of 

sediments during high flow events is seen as one of the major 

issues of increased pathogen counts during these events 

(Garzio-Hadzick et al., 2010).  Garzio-Hadzick et al. (2010) 

found linkages between water temperature and sediments, 

showing that bacteria survive better in sediments with cooler 

waters.  Researchers used host-specific bacteria from cows 

and humans to explore die-off rates in varying sunlight 
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scenarios, and found that rates were slowed in darkness for 

both source types (Walters & Field, 2009).  Various other 

factors such as nutrients (NO3
-, NH4

+, and PO4
3-) and predation 

also affect growth and mortality rates once pathogens are in 

the water (Walters & Field 2009; Williams et al 2012). 
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Figure 2. Conceptual model of common factors that influence the fate and 

transport of E. coli in a watershed. 
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Table 1. Common environmental factors affecting the survival and transport of Esherichia 

coli in a watershed. 

Watershed factors Effect summary Source 

Air temperature 
Growth rates of colonies tend to in-

crease in air temperatures from 4°C - 

23° F, and fall sharply to tempera-

tures  at 40°+. 

Becker et al. 2010 

 Francis & O'Beirne 2001 

Humidity/Soil moisture 
Wetted organic soils increased sur-

vival rates especially after precipi-

tation, and dry soils increased mor-

tality rates. 

Jamieson et al. 2004 

  

Soil type 
Fine grain soils show lowered colony 

survival rates than coarser silt 

soils, but both were influenced by 

moisture. 

Mubiru et al. 2000 

  

Geology 
Differences in hydrogeology and aqui-

fer make up influence ground water 

contamination of E. coli counts. 

Leber et al 2010 

  

Stream bank slope 
High slope conditions increase sedi-

ment and nutrient runoff to streams. 

Jamieson et al. 2004 

 Sekely et al. 2002 

Sunlight 
E. coli mortality is highly sensitive 

to increases in UV radiation. 
Gascón et al. 1995 

  

Vegetation / Landuse 
Silvopastures had lower bacterial 

counts in sub surface water than 

grassland pastures and non-grazed 

hardwood forests. 

Boyer & Neel 2010 

  

Riparian buffer 
Vegetative grass buffers can signifi-

cantly retain E. coli from stream en-

try 

Tate et al. 2006 
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Table 2. Common environmental factors affecting the in stream fate of Esherichia coli in 

streams. 

In stream conditions Effect summary Source 

Stream temperature 

Sediment reservoir E. coli have orders 

of magnitude increased survival rates in 

cooler 4° C water, than 14° C and 24° C 

freshwaters. 

Garzio-Hadzick et al. 

2010 

  

Salinity 
Osmotic stress and other abiotic factors 

increase bacteria die-off in estuarine 

and intertidal rivers. 

Rhodes & Kator 1988 

  

pH 
Bacteria have higher mortality in soils 

and sediments that have lower pH, and 

survive better in alkaline soils. 

Jamieson et al. 2004 

  

Predation 
E. coli and other allochtonous bacteria 

are grazed on by protozoa, lytic bacte-

ria, and phages. 

Barcina et al. 1997 

  

Sediment  

E. coli survive longer in stream sedi-

ments than in the over laying water, and 

they become resuspended during storm 

events. 

Garzio-Hadzick  et 

al. 2010 

  

Nutrients 
Improved E. coli survival is linked to 

land use and increases in nutrient in-

putting from runoff of (NO3-, NH4+, and 

PO43-) 

Williams et al. 2012 

  

Sunlight 
Both human and bovine E. coli survive 

longer in dark microcosms than light mi-

crocosms. 

Walters & Field 2009 
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Pathogen Modeling 

It is difficult to accurately estimate loading from non-

point sources into all waterbodies because of differences in 

soil types, topography, climate, and land uses. Regardless, 

water quality managers must develop reasonable models to 

predict current and future pathogen inputs into streams for 

specific watersheds. Typically watershed managers use one of 

many EPA suggested mechanistic models to characterize source 

inputting, fate process, and potential remediation scenarios 

(USEPA, 2012b). One of the most widely cited review papers by 

Jamieson et al. (2004) clearly lays out the difficulties of 

source characterization, and fate and transport processes 

that influence enteric bacteria modeling.  Besides point 

source loading, bacterial loading models generally try to 

model the fate and transport of pathogens via land transport, 

in stream transport, soil infiltration, storage and movement 

through the vadose zone, and groundwater hyporheic zone 

stream entry points (Benham et al., 2006; Kim et al., 2009).   

Often mechanistic hydrologic models, like SWAT and HSPF, 

assume that bacteria are transported in dissolved solution, 

as are other non-organic pollutants (Boyer & Kuczynska, 2008; 

Ponk et al., 2008).  The best of these mechanistic models 

take into account numerous processes and watershed factors 
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and must be finely tuned and calibrated to each new project.  

This setup, calibration, and validation process is extremely 

time consuming, and therefore expensive.  With the need to 

characterize the probable condition of a state or country’s 

water quality, researchers are developing empirical desktop 

methodologies to explore water quality in a cost effective 

manner (Crowther et al., 2001). 

In the U.S., the U.S. Geological Survey (USGS) developed 

a complex spatially referenced regression model which 

predicts regional water quality (Smith et al., 1997). Smith 

et al. (1997) developed the SPARROW model to address common 

problems in assessing regional water quality.  Some of the 

difficulties they stated are: scarce sampling locations due 

to limited management budgets, focused sampling selection to 

characterize causes and sources of contamination, and 

nonuniform basin characteristics between sampling sites.  

This model linked spatial land use and geographic attributes, 

hydrology, and source generation to make a regional 

prediction map of the continental United States using 

hundreds of monitoring sites and years of hydrological data.  

SPARROW was able to characterize total phosphorus (R² = 0.82) 

and total nitrogen (R² = 0.88) loading to streams and then 

relate that to infrequently or never sampled streams on a 
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multi-state regional scale.  The authors also conclude that 

the model gives an understanding to the important factors 

that affect water quality (Smith et al. 1997).  Even though 

the SPARROW model was not developed for pathogen contaminant 

transport, the techniques used to statistically analyze how 

stream nutrients relate to land use and other spatial 

variables could be informative to other water quality 

violations such as pathogens. 

Other researchers around the world have been using 

desktop empirical techniques to address nationally mandated 

water quality policies that are similar to the US Clean Water 

Act.  Researchers in the United Kingdom (UK) are using 

regression models linking land use type to predict fecal 

indicator organisms instead of using animal counts, grazing 

density, and manure application rates (Crowther et al., 

2003).  In 2003, Crowther et al. used a stepwise procedure to 

build a multiple regression model linking land use in 20 

catchments ranging from 0.7 - 178 km² to E. coli counts. The 

independent variables included land use and basin morphology 

features such as: % pasture, % woodland, % build up (urban), 

stream slope, mean altitude, and flow distance.  With this 

model the researchers were able to account for 81.6 % to 

82.9 % (R²) variation in bacteria counts, during low and high 
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flow periods respectively (Crowther et al., 2003).  These UK 

researchers have been progressing their researches on land 

use and other geographic data models for source appointment 

and catchment export coefficients in surface waters, and then 

exploring land change and best management scenarios (Crowther 

et al., 2003; Kay et al., 2005; Kay et al., 2008; Kay et al., 

2010).  More recent researches are now moving towards “Generic 

Models”, which are used to predict or estimate likely pathogen 

concentration in surface waters across the country (Crowther 

et al., 2011).  These newer regional models are having better 

results by including population variables such as human and 

livestock counts along with land use/cover characteristics; 

this increased the results of previous regional models 

adjusted R² values from 0.54 to 0.62 (Crowther et al., 2011). 

In unpublished research, the New Zealand Ministry for 

the Environment (NZME) used a statistical machine learning 

method called random forest to make nationwide predictions of 

E. coli stream concentrations (NZME, 2010).  Conceptually, 

the statistical technique these researchers used can be 

thought of as a type of multiple linear regression, but it is 

not.  Random forest is a type of multivariate non-parametric 

classification system, which does not rely on the many 

overlaying assumptions that regression statistics rely on.  
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Regression statistics assume normal distributions and 

standardize variability in the data, whereas classification 

trees or other nonparametric methodologies do not.  

Ecological and other environmental data, such as bacteria 

counts and natural factors generally violate these 

assumptions (Cutler et al., 2007).  From 396 spatially diverse 

sites they used 28 variables that incorporated land cover, 

climate and flow, and catchment geologic and topography 

features to model bacteria counts (NZME, 2010).  This 

bootstrapped classification and regression tree model was 

able to explain ~%70 of the variance of E. coli (count/100 

ml), with a mean prediction of 256 and a standard deviation 

of 361 (NZME, 2010).  Catchment elevation, % heavy pasture, 

and rain variability were found to be the most important 

predictors of bacteria counts in this study.  The NZME 

researchers then used this model to create a prediction map 

of New Zealand's water-quality in untested or infrequently 

test surface waters across the country.   

These different approaches have a common theme, of taking 

available water quality data, with likely culprits that 

affect pathogen loading and fate, to predict surface water 

quality in rarely or infrequently sampled waters. In my study, 

I used similar techniques to assess water quality. 
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METHODS  

Study Area 

Bacteria sampling station selection was limited to the 

Oregon portion of the Coast Range Level III ecoregion for 

reasons related to transferability, regional water quality 

needs, and data availability (Figure 3).  Clark et al. (1991), 

some of the original contributors to the Oregon ecoregion 

project, note that by recognizing similarities and 

differences between ecoregions rather than across watershed 

boundaries state managers could more effectively assess 

trends in water quality from point and nonpoint pollution 

sources.  They also state that results from regional 

assessments could be more reliably extrapolated to a region 

as a whole when limited by a few number of sampling sites 

(Clark et al., 1991).  As a result of numerous water quality 

violations, the ODEQ has implemented several bacteria related 

TMDL’s from the northern mid-coast’s streams, and is 

currently developing other TMDL’s along the coastal region 

(ODEQ, 2013a).  These pathogen impairments are violating both 

recreational contact and shellfishing industry use 

designations (ODEQ, 2013a). Public health managers, the EPA, 

and ODEQ are especially concerned with source identification 

and reducing bacteria contamination to an already threatened 



26 

 

shellfishing industry (ODEQ, 2011). Within the region, the 

use of coastal waters and mountainous streams is common for 

both angling and recreation.  Pathogens exposure to humans 

from the recreational use designation is more of a concern in 

the summer dry months from a management and health point of 

view. Water quality in the Coast Range is the second most 

frequently sampled ecoregion, after the Willamette Valley 

(ODEQ, 2012).  Due to the health concerns over toxic shellfish 

and pathogen exposure to recreational users, frequent 

sampling in the region, and continued and extensive focus 

from water quality managers and stakeholders, the Coast Range 

made for a prime case study.   
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Figure 3. Study area, Oregon Coast Range, USEPA ecoregion level III (Clarke & 

Schaedel, 1991). 
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Water Quality Data 

Approximately 16,400 fecal coliform and E. coli sample 

counts between the year 2000 and 2010 were collected by ODEQ 

or partnering organizations.  These data  along with station 

sampling location data were retrieved from ODEQ’s online 

Laboratory Analytical Storage and Retrieval (LASAR) database 

(ODEQ, 2012) (Table 3).  Only Quality Control (QC) water 

quality data of A or A+, the highest standards defined in 

Oregon’s “Quality Assurance Project Plan” were collected for 

this project (ODEQ, 2008).  According to ODEQ protocol when 

assessing water quality in relation to E. coli counts, maximum 

probability of the number (MPN/100ml) and colony forming 

units (CFU/100ml) were considered equal, and translated to a 

generic count number in this analysis (R. Michie ODEQ, 

personal communication).  When a MPN or CFU of either fecal 

coliform or E. coli “Result” column contained characters 

“est”(estimated count #), “<”(less than count #), or 

“>”(greater than count #) the following protocol was to apply 

the equation below: 

CR * 0.80 = CN  

(1) 

where CR equaled the reported count and CN equaled the new 

count used for analysis and reporting (R. Michie ODEQ, 



29 

 

personal communication).  In 1996, the state of Oregon 

switched to an E. coli indicator pathogen organism standard 

in fresh and estuarine waters, and a fecal coliform standard 

for estuarine and marine shellfishing waters standard.  With 

the need to make comparisons in estuarine or other waters, to 

meet water quality standards, a regression equation was made 

to facilitate easy transference between fecal coliform counts 

and E. coli indicators (Cude, 2005).  Since a disproportional 

amount of the data set’s results were reported as E. coli 

indicators the following regression equation from Cude (2005) 

was used to transform fecal coliform counts to E. coli counts: 

E. coli = 0.531 * (Fecal coliform) 1.06 

(2) 

with Eq. 1 being applied before Eq. 2.  “Cancelled”, 

laboratory duplicates, and other miscellaneous anomalies in 

the count results were removed entirely from the data set. 
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Organization Dataset Data type File Format Scale

USGS National Elevation Dataset Elevation Raster 1 arc-second 

EPA, USGS NHDPlus Version 2
Hydrography 

Dataset 
Raster 30m

EPA, USGS NHDPlus Version 2
Flow / 

Catchments
Shapefile 1 :100,000

U.S. Dept. 

Commerce
2010 U.S. Census Population Shapefile Census Block

MRLC
National Land Cover 

Database 

Land 

Cover/Use
Raster 30 m

PRISM Climate mapping system Climate Raster 30-arcsec

ODEQ Water quality
Sample 

location
csv NA

ODEQ Water quality

E. coli / 

Fecal 

coliform

csv NA

USDA Livestock Census 2007 Livestock csv Zip code

USDA
State Soil Geographic data 

base
Soils Shapefile 1:250,000

~0.01% over count

78% - 85% accurate

130 m circular error 

within 90%

Unknown, see body 

text.

ODEQ Quality Control 

level A or A+

Z value RMSE = 2.44 m

Ecoregion development 

is ongoin

Highly dependent on 

scale and field 

NASS's goal is to 

count all U.S farms, 

Based off National 

Elevation Dataset

Based off Elevation 

Dataset

Table 3. Research data acquisition and sources.  Relationships between land use and other watershed 

variables that influence water quality violations of E. coli.(* = Data, Databases Cited)

Uncertainty*

EPA
Ecoregions of North America 

Level III
Ecoregion Shapefile 1:3,000,000
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Geographic Data 

Only publically available data sets were used in this 

assessment (Table 3).  Flow accumulation and hydrography data 

(30m²) were acquired from the National Hydrography Dataset 

Plus Version 2.1 (NHDPlusV2) (USEPA, 2012). Digital elevation 

models (30m²) from National Elevation Dataset (NED) (Gesch et 

al., 2009) were provided by U.S. Geological Survey.  Land use 

data was from the year 2006 version of National Land Cover 

Database (NLCD) (30m²) (Fry et al., 2011).  Zip code 

resolution, livestock and animal operations data were 

retrieved from the U.S. Department of Agriculture’s (USDA) 

National Agricultural Statistics Service database, which had 

survey data for dates either ending in the year 2007 or 2008 

(USDA-NASS, 2009).  Census 2010 USA population data at the 

census block level were retrieved from ERSI, Inc.’s (2012) 

free ArcGIS Online Map Services.  Soil attributes were 

retrieved from the STATGO soils database (Soil Survey Staff, 

Natural Resources Conservation Service, United States 

Department of Agriculture and U.S. General Soil Map 

(STATSGO2)). ODEQ LASAR latitude and longitude along with 

site descriptions were taken at face value, when aligning 

sampling sites to streams within the geographical information 

system (GIS) platform. Sampling station location was then 
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placed on the listed stream reach dictated by the descriptor 

indicated in “Station Memo” and “Station Description” fields 

reported in the LASAR database.  Because of differences in 

environmental factors such as dilution, osmotic stress, pH, 

nutrients, and temperature, station selection was limited to 

non-estuarine lotic streams that did not occur in marine 

mixing zones (Rozen & Belkin, 2001).   

From the acquired data sets, eighty-eight watershed 

characteristics were derived to match the common 

environmental factors affecting the survival and transport of 

E. coli in a watershed (Table 4).  Besides individual NLCD 

land use types, four alternate classes or general land use 

types were also developed.  These four classes were a forest 

set; urban, natural, which aggregated these individual land 

cover types.  From the USDA livestock census, five sets of 

confined feeding operations were made: sheep, chickens, 

cattle, milk-dairy, and total operations per zip code.  Soils, 

livestock, population, and climate data had varying scales of 

resolution and therefore were converted into grid rasters 

(30m²) to match hydrography and land cover data.  Soils 

predictors were limited to a likely transport zone, and 

therefore only derived to a depth of 10 cm for each variable.  

NHDPlusV2 flowlines were used to make two additional brackets 
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of predictors. These were meant to represent riparian land 

use directly next to streams, and were classified by two 

buffered zones of 30m and 100m outwards of the streams.  

Within these additional riparian catchments zones, 

soils/physiography, and the land use classes completed the 

set of 88 watershed characteristics. 

 

Table 4. Complete list of watershed fecal coliform predictors. 

Variable Model Name Description / notes 

Open Water LU_11 Open Water 

Ice/Snow LU_12 Ice/Snow 

Developed, Open Space LU_21 Developed, Open Space 

Developed, Low Intensity LU_22 Developed, Low Intensity 

Developed, Medium Intensity LU_23 Developed, Medium Intensity 

Developed High Intensity LU_24 Developed High Intensity 

Barren Land 

(Rock/Sand/Clay) 
LU_31 

Barren Land 

(Rock/Sand/Clay) 

Deciduous Forest LU_41 Deciduous Forest 

Evergreen Forest LU_42 Evergreen Forest 

Mixed Forest LU_43 Mixed Forest 

Shrub/Scrub LU_52 Shrub/Scrub 

Grassland/Herbaceous LU_71 Grassland/Herbaceous 

Pasture/Hay LU_81 Pasture/Hay 

Cultivated Crops LU_82 Cultivated Crops 

Woody Wetlands LU_90 Woody Wetlands 

Emergent Herbaceous Wet-

lands 
LU_95 

Emergent Herbaceous Wet-

lands 

Natural Natural Natural 

Urban Urban 
Sum of: LU_21, LU_22, 

LU_23, LU_24 

Agricultural Ag Sum of: LU_81, LU_82 

Forest Forest Sum of: LU_41, LU_42, LU_43 

Elevation Ele Meters * 100 

Slope Slope Degrees 



34 

 

Silt Silt Percent silt - Top 10cm 

Clay Clay Percent clay - Top 10cm 

Sand Sand Percent Sand - Top 10cm 

Ksat Ksat 
Saturated hydraulic conduc-

tivity (m/s) 

Available water AW 
Volume of water available 

(mm)  - Top 10cm 

Human Population Pop Count of population 

Sheep Sheep Sheep operations * 1000 

Cattle Cattle Cattle operations * 1000 

Milk Milk Dairy operations * 1000 

Chicken Chicken Chicken operations * 1000 

Total Operations TO Total animal operations 

Temp Max Tmax 
Mean 1991-2010 maximum tem-

perature C° 

Temp Min Tmin 
Mean 1991-2010 minimum tem-

perature C° 

Precipitation Precip 
Mean 1991-2010 precipita-

tion 

Open Water LU_11_30m 30 meter stream buffered 

Ice/Snow LU_12_30m 30 meter stream buffered 

Developed, Open Space LU_21_30m 30 meter stream buffered 

Developed, Low Intensity LU_22_30m 30 meter stream buffered 

Developed, Medium Intensity LU_23_30m 30 meter stream buffered 

Developed High Intensity LU_24_30m 30 meter stream buffered 

Barren Land 

(Rock/Sand/Clay) 
LU_31_30m 30 meter stream buffered 

Deciduous Forest LU_41_30m 30 meter stream buffered 

Evergreen Forest LU_42_30m 30 meter stream buffered 

Mixed Forest LU_43_30m 30 meter stream buffered 

Shrub/Scrub LU_52_30m 30 meter stream buffered 

Grassland/Herbaceous LU_71_30m 30 meter stream buffered 

Pasture/Hay LU_81_30m 30 meter stream buffered 

Cultivated Crops LU_82_30m 30 meter stream buffered 

Woody Wetlands LU_90_30m 30 meter stream buffered 

Emergent Herbaceous Wet-

lands 
LU_95_30m 30 meter stream buffered 

Natural 
Natu-

ral_30m 
30 meter stream buffered 

Urban Urban_30m 30 meter stream buffered 

Agricultural Ag_30m 30 meter stream buffered 

Forest Forest_30m 30 meter stream buffered 
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Slope Slope_30m 30 meter stream buffered 

Silt Silt_30m 30 meter stream buffered 

Clay Clay_30m 30 meter stream buffered 

Sand Sand_30m 30 meter stream buffered 

Ksat Ksat_30m 30 meter stream buffered 

Available water AW_30m 30 meter stream buffered 

Open Water LU_11_100m 100 meter stream buffered 

Ice/Snow LU_12_100m 100 meter stream buffered 

Developed, Open Space LU_21_100m 100 meter stream buffered 

Developed, Low Intensity LU_22_100m 100 meter stream buffered 

Developed, Medium Intensity LU_23_100m 100 meter stream buffered 

Developed High Intensity LU_24_100m 100 meter stream buffered 

Barren Land 

(Rock/Sand/Clay) 
LU_31_100m 100 meter stream buffered 

Deciduous Forest LU_41_100m 100 meter stream buffered 

Evergreen Forest LU_42_100m 100 meter stream buffered 

Mixed Forest LU_43_100m 100 meter stream buffered 

Shrub/Scrub LU_52_100m 100 meter stream buffered 

Grassland/Herbaceous LU_71_100m 100 meter stream buffered 

Pasture/Hay LU_81_100m 100 meter stream buffered 

Cultivated Crops LU_82_100m 100 meter stream buffered 

Woody Wetlands LU_90_100m 100 meter stream buffered 

Emergent Herbaceous Wet-

lands 
LU_95_100m 100 meter stream buffered 

Natural 
Natu-

ral_100m 
100 meter stream buffered 

Urban Urban_100m 100 meter stream buffered 

Agricultural Ag_100m 100 meter stream buffered 

Forest 
For-

est_100m 
100 meter stream buffered 

Slope Slope_100m 100 meter stream buffered 

Silt Silt_100m 100 meter stream buffered 

Clay Clay_100m 100 meter stream buffered 

Sand Sand_100m 100 meter stream buffered 

Ksat Ksat_100m 100 meter stream buffered 

Available water AW_100m 100 meter stream buffered 
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Geoprocessing and Model Building 

Initially, ArcGIS 10.0 Service pack 5 (ESRI, 2012) 

geographical information system was used to analyze all 

spatial data for this study.  It was possible to generate 

spatially explicit zonal statistics for each of the watershed 

variables within the ArcGIS environment, but due to the 

extreme size of the study area, inefficiency, and exaggerated 

models times, geoprocessing data in ArcGIS became a common 

problem.  Even when combined with the “ModelBuilder” toolset 

in ArcGIS and custom Python 2.6 (Python Software Foundation, 

2010) scripts, geospatial analytics would frequently 

overwhelm these tools when aggregating data for 10,000 plus 

subcatchments. A novel approach of using NHDPlusV2 uniquely 

identified flow catchments and their flow to and flow from 

entries in the NHDPlusV2 database.  This was used to generate 

a watershed weighted value of all predictors for each 

catchment in the study area.  Each catchment in the NHDPlusV2 

dataset has an identifier and relationship entry in the 

database that indicates flow direction, and whether it flows 

into another downstream catchment or not.  From these 

relationships a to:from data dictionary was built for each 

catchment where one could look up and aggregate all of the 

contributing catchments for any downstream catchment.   With 
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this it was then possible to weight each catchment by its 

percentage of contributing land use type or other model 

predictors.  As an example, in Figure 4. NHD Catchment ID 

23876079 is a flow through catchment and has a contributing 

area of many upstream flow through catchments as well as true 

watershed catchments.  So, to account for this and differences 

in catchment sizes, predictors had to be weighted by their 

relative contribution areas.  This custom approach becomes 

important when visualizing the final model predictions.   For 

these and other geospatial statistical techniques used in 

this analysis, custom spatial processing scripts were made 

using R 2.15.2 statistical package (R Core Team, 2012).  These 

scripts were then combined with Python processing to develop 

effective ways to compile and analyze these data (Appendix 

A). 

Figure 5 diagrams the process flow used to generate the 

final, spatially explicit model.   Water quality sampling 

stations in the coastal ecoregion were initially parsed down 

from the full set of 532 stations to non-estuarine lotic 

streams that did not occur in marine mixing zones location.  

Further analysis focused to incorporate general temporal 

trends in the region, water quality sites were therefore also 

limited to sites that had at least 20 observations that 
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generally spanned quarterly sampling over the years 2000-

2010. The years from 2000 to 2010 are considered, for Oregon, 

to be a prime candidate sampling period which includes: 

drought, wet, cool, and record heat years (H. Lee, US EPA, 

personal communication).  This temporal selection, along with 

natural log geometric averaging: 

ln( √𝑋1𝑋2…𝑋𝑛 
 𝑛 ) 

(3) 

limited fluctuations in bacteria observations, and sought to 

address concerns of  temporal autocorrelation of the samples.  

Spatially, sampling site selection was hindered by clustered 

measurement locations (Figure 4).  Much effort was made to 

eliminate sites that exhibited drainage nesting and upstream 

sampling site flowing to another downstream reach to reduce 

spatial autocorrelation.  Additional selection was based in 

part on equalizing watershed sizes (areas) between sampling 

locations, and optioning for sites which had a greater number 

and diversity (temporal) of measurements for the study time 

span. When obtaining enough sites to sufficiently 

statistically model was not met, hydrologically nested sites 

were limited by at least a distance of 5+ kilometers.    
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Figure 4. Example of water quality sampling stations, 

spatial autocorrelation, and site independence issues. 

Highlighting flow through NHD Catchments and weighting of  

contributing watershed analysis used in model development 

and predictions of E. coli. 

 

 

 

 

  

Independence. 
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Figure 5. Process flow diagram for spatial analysis of in 
stream bacteria prediction. 
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To better understand the general relationships between 

the predictors themselves, a Principal Components Analysis 

(PCA) was applied to a subset of the full random forest 

predictors. Along with animal operations, human population, 

and general physiography, this PCA was parsed down to just 

the aggregated riparian buffered (30m and 100m) land use 

classifications, such as agriculture, forest, urban, and 

wetlands. PCA, as with multiple regression models, can suffer 

from over fitting. When too many predictors are added to these 

models, they can inflate its results.  Since the PCA is an 

exploratory tool, the predictors were reduced to the combined 

land cover classes, population, and animal operations, from 

an original 1 site to 1 predictor to a more manageable 1:4 

ratio.  Interpretable components of the PCA were selected 

through the broken stick model (Frontier, 1976). 

Among other things, multivariate normality of these 

environmental variables were not fixed by conventional data 

transformations, so relationships to bacteria could not be 

explored with many multivariate techniques that require 

multinormality assumption.  Classification trees, however, do 

not require such assumptions, and can successfully deal with 

missing data points, non-normality, and unequal variances 

(Strobl et al, 2009; Torsten et al, 2010). Classification 
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trees build upon binary splits in the predictor variables to 

classify a categorical dependent variable.  The final 

prediction model used was a random forest model and is 

analogues to an ensemble of classification trees. The random 

forest model was built using a continuous response variable.  

This non-parametric approach was done using the 

“randomForest” package in the statistical software R.  The 

random forest modeled spatially explicit watershed variables 

vs. continuous observations of E. coli (Appendix B).  This 

implementation of Breiman's random forest (randomForest) 

fixed problems that it had towards highly correlated 

variables (Strobl et al, 2008).  A total of 10,000 trees were 

grown.  Variables are said to be important predictors if their 

variable importance score is higher than the absolute value 

of the lowest predictor (Strobl et al, 2009).  The rationale 

for this importance of predictors is that “irrelevant 

variables vary randomly around zero” (Strobl et al, 2009). 

For visualization purposes and to have a reasonable 

estimation of what is happening in the random forest model a 

single Classification and Regression Tree (CART) was also 

grown. E. coli was grouped into three almost equally sized 

categories: 0-25 (cfu/100ml), 25-50 (cfu/100ml), and 50+ 

(cfu/100ml) for the CART model.  The CART model employed to 
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expose the complex interaction between the numerous predictor 

variables, and to give a visual sense of what was likely going 

on in the random forest model.  Finally, the random forest 

model, along with the flow:to flow:from NHDPlus V2 

catchments, a catchment area weighted prediction map was 

developed for the Oregon coast range.  With, R 2.15.2 

statistical software (R Core Team, 2012) being used for all 

analysis, and packages randomForest and rpart for the random 

forest and CART models.  
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RESULTS 

Of the coast range’s 532 sampling locations retrieved 

from ODEQ’s online database a final study set of 93 sites was 

compiled. These sites were chosen due to reasons of: salinity 

in tidal zones, watershed nesting, station sampling counts, 

and temporal diversity among other things (Figure 6).  More 

broadly, this selection left a more northern grouping of sites 

than in the  southern coast range, with approximately two 

thirds of the sites being to the north of the city Newport, 

a gap of few sites in the central coast, and other third 

spread along the southern region. These sites, in total had 

6657 samples collected during the study years (2000-2010), 

averaging roughly 70 samples per site.  Land use between the 

watersheds varied considerably: Agriculture 0% - 7%, Forest 

48% - 91%, Urban 2% - 11%, and Natural 85% - 98%, with means 

of 1%, 70%, 6%, and 93% respectively (Table 5).  Study 

watershed size ranged from a 25% quartile of ~4,800 ha to 75% 

quartile of ~42,500 ha, and a mean of 32,300 ha.  Geomean E. 

coli counts ranged from 5 (cfu/100ml) to 396 (cfu/100ml) with 

a median of 36 (cfu/100ml).   
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Figure 6. Oregon coast range ecoregion bacteria sampling stations (left), final selection (center left), 

north coast sites (center right), and south coast sites (right).



46 

 

Table 5. Summary statistics of final study watersheds, 

predictors, and fecal coliform. (Q. = Quartile) (Units: 

Population, and animal operations are average #/30m².  All land 
uses and soils are in % of watershed. Slope is average # of 

degrees (slope angle). Elevation is cm) 

Variable Min 1st Q. Median Mean 3rd Q. Max 

Watersheds 303 4880 14700 32300 42500 191000 

 (ha)       

Ecoli_geomean 

(cfu/100ml) 
4.5 20.6 33.6 60.4 67.5 396.0 

     awc 0.16 0.19 0.22 0.23 0.27 0.30 

   awc_100m 0.17 0.19 0.21 0.23 0.27 0.30 

   awc_30m 0.17 0.19 0.21 0.23 0.27 0.30 

    cattle 0.0027 0.0303 0.0665 0.0648 0.0914 0.1690 

    chick 0.0011 0.0091 0.0138 0.0173 0.0197 0.0733 

     clay 17.80 20.20 21.00 21.50 22.50 30.90 

   clay_30m 18.40 20.50 21.00 21.70 22.50 35.50 

  clay_100m 18.40 20.50 21.00 21.70 22.50 35.20 

  elevation 8130 24300 29300 32600 38500 72100 

     ksat 6.48 9.17 9.17 14.10 20.60 28.20 

   ksat_30m 6.15 9.17 9.17 13.90 19.40 28.20 

  ksat_100m 6.15 9.17 9.17 13.90 19.50 28.20 

     milk 0.0000 0.0019 0.0035 0.0119 0.0133 0.0619 

  population 0.0000 0.0008 0.0017 0.0041 0.0033 0.0904 

    precip 116000 198000 241000 245000 295000 378000 

     sand 7.20 15.40 23.50 24.00 32.90 42.10 

   sand_30m 7.20 15.30 21.80 23.40 32.20 42.10 

  sand_100m 7.20 15.40 21.70 23.50 32.20 42.10 

    sheep 0.00 0.00 0.01 0.01 0.02 0.07 

     silt 37.90 44.50 55.60 55.00 63.60 70.30 

   silt_30m 37.90 46.50 56.60 55.20 63.40 70.30 

  silt_100m 37.90 46.30 56.40 55.20 63.30 70.30 

    slope 9.89 14.80 17.10 17.70 19.20 31.80 

  slope_30m 5.80 8.72 11.90 11.70 14.20 18.90 

  slope_100m 8.10 12.80 15.40 15.60 17.90 24.80 

   temp_max 1360 1470 1520 1550 1640 1790 

   temp_min 423 517 555 554 601 685 

    forest 0.4860 0.6140 0.7040 0.7060 0.7830 0.9110 

      ag 0.0000 0.0000 0.0043 0.0107 0.0142 0.0692 

   natural 0.8520 0.9240 0.9340 0.9330 0.9480 0.9830 
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    urban 0.0164 0.0459 0.0509 0.0562 0.0684 0.1100 

    LU_21 0.0161 0.0416 0.0503 0.0536 0.0666 0.1020 

    LU_41 0.0004 0.0094 0.0186 0.0253 0.0333 0.1290 

    LU_42 0.2000 0.4000 0.4460 0.4620 0.5180 0.7670 

    LU_43 0.0238 0.1540 0.2100 0.2190 0.2750 0.4890 

    LU_52 0.0300 0.1010 0.1380 0.1550 0.2030 0.3570 

    LU_71 0.0000 0.0291 0.0572 0.0617 0.0822 0.2030 

    LU_90 0.0000 0.0038 0.0058 0.0066 0.0082 0.0286 

    LU_11 0.0000 0.0000 0.0000 0.0002 0.0002 0.0025 

    LU_22 0.0000 0.0003 0.0013 0.0023 0.0027 0.0355 

    LU_23 0.0000 0.0000 0.0001 0.0002 0.0002 0.0041 

    LU_24 0.0000 0.0000 0.0000 0.0001 0.0001 0.0006 

    LU_31 0.0000 0.0005 0.0011 0.0016 0.0020 0.0090 

    LU_81 0.0000 0.0000 0.0039 0.0101 0.0132 0.0685 

    LU_82 0.0000 0.0000 0.0001 0.0006 0.0007 0.0062 

    LU_95 0.0000 0.0004 0.0009 0.0020 0.0019 0.0276 

   ag_100m 0.0000 0.0000 0.0090 0.0236 0.0270 0.2820 

 forest_100m 0.4050 0.6010 0.6740 0.6790 0.7650 0.9920 

  urban_100m 0.0024 0.0663 0.0784 0.0825 0.0927 0.1890 

 natural_100m 0.6730 0.8750 0.9040 0.8940 0.9200 0.9980 

  LU_100m_21 0.0024 0.0645 0.0755 0.0782 0.0927 0.1890 

  LU_100m_41 0.0003 0.0136 0.0327 0.0472 0.0577 0.3240 

  LU_100m_42 0.0717 0.2260 0.2980 0.3030 0.3520 0.6410 

  LU_100m_43 0.0566 0.2690 0.3320 0.3290 0.3910 0.5580 

  LU_100m_52 0.0031 0.0766 0.1050 0.1140 0.1430 0.2830 

  LU_100m_71 0.0000 0.0242 0.0433 0.0534 0.0758 0.1970 

  LU_100m_90 0.0000 0.0223 0.0325 0.0375 0.0484 0.1450 

  LU_100m_11 0.0000 0.0000 0.0000 0.0011 0.0012 0.0115 

  LU_100m_22 0.0000 0.0002 0.0014 0.0038 0.0042 0.0643 

  LU_100m_23 0.0000 0.0000 0.0000 0.0004 0.0003 0.0088 

  LU_100m_24 0.0000 0.0000 0.0000 0.0001 0.0000 0.0009 

  LU_100m_31 0.0000 0.0002 0.0010 0.0013 0.0023 0.0058 

  LU_100m_81 0.0000 0.0000 0.0086 0.0221 0.0246 0.2820 

  LU_100m_82 0.0000 0.0000 0.0000 0.0015 0.0010 0.0263 

  LU_100m_95 0.0000 0.0013 0.0037 0.0081 0.0075 0.1160 

    ag_30m 0.0000 0.0000 0.0061 0.0211 0.0235 0.2990 

   urban_30 0.0000 0.0291 0.0354 0.0425 0.0555 0.1210 

 natural_30m 0.6780 0.9250 0.9490 0.9360 0.9630 1.0000 

  forest_30m 0.3550 0.6510 0.7220 0.7150 0.8070 1.0000 
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  LU_30m_21 0.0000 0.0283 0.0344 0.0398 0.0531 0.1160 

  LU_30m_42 0.0139 0.1790 0.2340 0.2560 0.3210 0.6390 

  LU_30m_43 0.0820 0.3310 0.4060 0.4010 0.4760 0.6880 

  LU_30m_52 0.0000 0.0584 0.0900 0.0987 0.1340 0.2730 

  LU_30m_71 0.0000 0.0218 0.0297 0.0450 0.0598 0.2370 

  LU_30m_90 0.0000 0.0371 0.0521 0.0648 0.0847 0.2820 

  LU_30m_41 0.0000 0.0158 0.0388 0.0572 0.0718 0.3500 

  LU_30m_11 0.0000 0.0000 0.0000 0.0017 0.0014 0.0164 

  LU_30m_22 0.0000 0.0000 0.0007 0.0025 0.0023 0.0610 

  LU_30m_31 0.0000 0.0000 0.0006 0.0010 0.0013 0.0087 

  LU_30m_81 0.0000 0.0000 0.0048 0.0199 0.0200 0.2990 

  LU_30m_82 0.0000 0.0000 0.0000 0.0012 0.0007 0.0297 

  LU_30m_95 0.0000 0.0018 0.0048 0.0105 0.0106 0.1690 

  LU_30m_23 0.0000 0.0000 0.0000 0.0002 0.0001 0.0042 

  LU_30m_24 0.0000 0.0000 0.0000 0.0000 0.0000 0.0005 

 T_operations 0.0042 0.0531 0.1110 0.1080 0.1490 0.2460 

 

 

Variables for the PCA were trimmed down to a final 21 

predictors, for a ratio of nearly four sites to for each 

predictor. Spatially, sites were placed into one of two 

categories, north and south, based roughly on a half-way point 

in the coastal region and the visual patterns seen in the 

data (Figure 6). Through the broken-stick model the PCA was 

reduced to 4 principal components explaining a total variance 

of 74% (Table 6).  In the first principal component (PC) bank 

slope, forested, and natural land uses most strongly and 

positively correlated together, while the variables related 

to agriculture and wetlands had nearly as strong negative 

correlations (Table 7, Figure 7).    Within the second 

component, grasslands had the highest positive loading, and 
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urban land use and sheep operations loaded negatively. Lastly 

in the third and fourth components, animal operations 

variables had the strongest negative and positive loadings 

respectively. In the Figure 7 it is apparent that natural 

riparian zone and agricultural areas have opposite vectors in 

PC one and urban and animal operations become visually 

negatively orthogonal on the second PC (Figure 7).  North and 

south locations appear to randomly spread over both PC one 

and PC two. 

 

Table 6. Total variance explained from PCA 

on broken-stick reduced components. 

Component Eigenvalues 

  Total % Variance Cumulative % 

1 8.45 0.40 0.40 

2 2.81 0.13 0.54 

3 2.33 0.11 0.65 

4 2.06 0.10 0.74 
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Figure 7. Principal components analysis for reduced watershed 

predictors (only the first 2 PCA axes were plotted). 0 = South 

Coast sites, and X = North coastal sites.  
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Table 7. Eigenvectors, loading for each of the final 

PCA components. Values were highlighted to call atten-

tion to the most influential loadings. 

  Principal Component 

Variable PC1 PC2 PC3 PC4 

cattle -0.19 0.15 -0.12 0.39 

chick -0.05 -0.06 -0.32 0.31 

elevation 0.17 0.15 0.06 0.02 

milk -0.08 -0.19 0.08 0.39 

population -0.11 -0.16 -0.27 0.06 

sheep -0.13 0.27 -0.24 0.18 

slope_30m 0.21 0.15 0.03 0.13 

slope_100m 0.21 0.15 0.08 0.16 

forest 0.21 -0.20 0.07 0.14 

ag -0.21 0.05 0.30 0.15 

natural 0.22 0.27 -0.02 -0.03 

urban -0.09 -0.38 -0.23 -0.08 

LU_71 -0.15 0.33 -0.10 -0.21 

ag_100m -0.22 0.04 0.33 0.14 

forest_100m 0.28 -0.12 0.01 0.12 

urban_100m -0.13 -0.29 -0.28 -0.10 

natural_100m 0.26 0.15 -0.10 -0.06 

LU_100m_71 -0.17 0.36 -0.16 -0.17 

ag_30m -0.22 0.05 0.32 0.14 

urban_30 -0.17 -0.12 -0.32 -0.09 

natural_30m 0.26 0.01 -0.14 -0.09 

forest_30m 0.28 -0.13 0.01 0.09 

LU_30m_71 -0.17 0.31 -0.19 -0.10 

T_operations -0.17 0.08 -0.18 0.46 

Wetland -0.21 -0.12 0.14 -0.13 

Wetland_30m -0.20 -0.09 0.14 -0.17 

Wetland_100m -0.19 -0.10 0.15 -0.21 
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The CART model clearly shows that elevation is the most 

important factor in prediction of stream fecal coliforms, as 

it was the primary split of the model (Figure 8). In the lower 

elevation sites, cattle operations in a watershed were 

associated with high bacteria counts. While in the higher 

elevation sites, high intensity development land use was 

related with primarily medium concentrations of E. coli. With 

areas of lower intensity urban development uses, bacteria 

counts were predicted to be classified into the low or medium 

category.  The CART model had a 19.4% misclassification rate. 

The complete predictor random forest model explained %56.5 of 

the variation, with a Mean of squared residuals of 0.36. The 

highest values in variance importance plot for the random 

forest model are primarily giving preference to the combined 

natural and forested riparian (30m and 100m) land use 

predictors (Figure 9). Cattle and total animal operations are 

in the mid to higher range of variable importance.  Similarly 

to the CART model, it also shows that watershed mean elevation 

as the primary predictor, yet it also yields riparian slope 

as of high importance.  As the other variables importance 

values near zero, they become relatively unimportant to the 

random forest model.  

A visualization of the Oregon coast range’s predicted 
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catchment level E. coli concentration can be examined in 

Figures 10 – 13.  These figures move down the coastal region 

from north, central, and to the south highlighting the 

ecoregion’s potential for bacteria impairment.  In Figure 10, 

catchments predicted to have higher levels of E. coli counts 

(left panel), such as those close into Tillamook, are also 

associated with areas of higher agricultural and urban land 

uses (right panel). Moving down to the central and southern 

coast, similar mid and high level bacteria prediction follow 

pastures and urban land use patterns, while higher elevation, 

forested, and natural areas inland are linked to lower 

concentration count predictions (Figures 11 - 13).  For 

further reference, and to “ground truth” the accuracy of the 

random forest model prediction catchments, sampling site 

locations for all of ODEQ’s coastal bacteria stations were 

also included in the left panels while sites used to build 

the model are seen in the right panels (Figure 6, 10-13).  

The reader needs to be aware that these 532 sites are averages 

of all counts (cfu/100ml) between the study years 2000-2010, 

and can range from as little as one sample to hundreds of 

samples per site.  For visualization purposes, color coding 

for ODEQ sampling sites and prediction catchments were 

standardized through Figures 10-13.  As an example, in Figures 
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12 & 13, from Bandon to the north and east of Coos Bay, the 

prediction maps fills in unsampled drainages in a similar 

nature to the sampled streams, and clear relations between 

land use types, watershed characteristics and bacteria 

sampling counts in relation to land use types can be seen 

when comparing between the panels in Figures 10-13.   

  



55 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Classification and regression tree model of in 

stream E. coli for Oregon’s coastal streams. 19.4% 

misclassification rate. 

293 m 
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Figure 9.  Random forest variable importance plot. Higher 

variable importance increase node splitting purity, variables 

closest to zero are relatively unimportant (IncNodePurity). 

While variables with higher “%IncMSE” increase node impurity 

when randomly permutated. 
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Figure 10. The Left panel includes E. coli (CFU /100 ml) predictions of 2000-2010 average in North 

Oregon coast range stream NHD Catchments, and ODEQ sampling sites averaged counts for the study 

years.  The right panel displays random forest modeled sites and 2006 NLCD land use classifications. 



58 

 

 
Figure 11. The Left panel includes E. coli (CFU /100 ml) predictions of 2000-2010 average in North 

Central Oregon coast range stream NHD Catchments, and ODEQ sampling sites averaged counts for the 

study years.  The right panel displays random forest modeled sites and 2006 NLCD land use 

classifications. 
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Figure 12. The Left panel includes E. coli (CFU /100 ml) predictions of 2000-2010 average in South 

Central Oregon coast range stream NHD Catchments, and ODEQ sampling sites averaged counts for the 

study years.  The right panel displays random forest modeled sites and 2006 NLCD land use 

classifications. 
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Figure 13. The Left panel includes E. coli (CFU /100 ml) predictions of 2000-2010 average in South 

Oregon coast range stream NHD Catchments, and ODEQ sampling sites averaged counts for the study 

years.  The right panel displays random forest modeled sites and 2006 NLCD land use classifications. 
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DISCUSSION 

 

The purpose of this research was three fold: to generate 

a generalized stream bacteria prediction model from easily 

obtainable watershed characteristics, to identify likely 

areas of high pathogen bacteria concentrations with 

infrequent monitoring, and to allow for future land use 

scenario analysis.  This random forest model in essence, 

provides a 2000-2010 year average, spatial snapshot of likely 

E. coli concentrations throughout Oregon’s coastal region. 

The findings of the random forest model appear sufficient and 

reliable, when compared to other researches.  This model’s 

56.5 % explanation of variation, analogues to an uninflated 

R² in a regression model, matches with Crowther et al. (2011) 

stream fecal coliform research on land cover and population 

related variables.  Land use was broken down into four 

categories of woodland, urban, grassland, and arable, while 

populations were defined by human, dairy, cattle, and sheep 

densities. These researchers’ regional models had prediction 

adjusted R² values ranging from 0.54 to 0.62 for in-stream 

fecal coliforms. This United Kingdom study was limited to 14 

coastal draining catchments, sampled in the summer bathing 

season, between the years 1995-2005, and used a minimum of 5 

samples for each site under base and high flow conditions to 
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make their fecal indicator model.      While similar research 

by the Ministry of Environment in New Zealand, researchers’ 

nationwide random forest model could explain 69.8% variation 

of in-stream E. coli (NZME, 2010).  These researchers had 

roughly 400 sampling sites with 5 years of consecutive 

quarterly sampled bacteria data, and did not make a 

distinction between independent and nested drainages in their 

analysis.  The majority of these sampling sites were either 

clustered around the population centers of the North Island, 

or on the southern portion of South Island.   Dissimilarities 

between this study’s random forest model and the Ministry of 

Environment researchers could be linked to a roughly four 

fold more sampling sites, precise quarterly sampling, or the 

clustered sampling locations in New Zealand.  Differences in 

uncertainties in GIS layers could also contribute to a higher 

explanation of variance in the NZME random forest model.  For 

example, this study used the NLCD 2006 land-cover dataset 

which had an accuracy of 78% for 16 land use classes, while 

the NZME used a 43 class Land Cover Database (LCDB) that has 

a ~96% accuracy rate (LCDB, 2012; Wickham et al. 2013).  

Other statistical methods such as the CART analysis both 

showed linkages to agricultural related activities and urban 

land uses as being highly influential on bacteria counts 
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(Figure 7 & 8, Table 7).  The PCA showed that predictors 

related to anthropogenic activities, such as grazing and 

urban land use, were highly correlated together.  These 

results coincide with Tillamook Bay research on genetic 

identification and source characterization of fecal pollution 

(Bernhard et al., 2002).  Their research found most fecal 

coliforms showed genetic markers from dairy operations and 

sewage due to anthropogenic activities on the coast.  The 

CART and random forest models showed elevation as a primary 

predictor, which agrees with conventional knowledge, that as 

one rises into a drainage basin and away from human activity 

water quality will improve.  The random forest model 

highlighted the importance of riparian land uses over overall 

watershed land uses.  This agrees with the body of evidence 

showing that natural and/or forest riparian buffers 

contribute significantly to improvements in water quality 

(Osborne & Kovacic, 1993; Lowrance et al., 1997).  Now that 

the random forest model has been developed for current 

regional conditions, future scenarios relating to changes or 

improvements in riparian zones could be explored.  

To assess uncertainties in the model we must first start 

with the underlying GIS layers.  As documented in the metadata 

of the publicly available datasets, these layers have 
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reasonable ranges of errors.  Again, the National Land Cover 

Dataset notes a 78% – 85% classification accuracy rate, 

because it is derived in part from statistical regressions of 

diverse remote sensing techniques (Fry et al., 2011).  Another 

example is the soils STATSGO2 data which is derived from 

coarse soil surveys (1:250,000).  There are new higher 

resolution USDA soils data, Soil Survey Geographic (SSURGO) 

dataset, scaling from 1:12,000 to 1:63,360, but these data 

have numerous voids on National lands, and could not be used 

in this analysis.  Populations data such as the USDA animal 

operations were of poor resolution, zip code level, and 

transformed to counts which were then spatially averaged and 

assigned equally over a zip code. Human census counts were of 

finer resolution, because census boundary size is based on 

population densities.  A single census district could be as 

small as an apartment building which had a population of 200+, 

or could be expansive, because a rural area might have almost 

no human residences.  Again, sampling site placement was taken 

at face value from the site descriptors and accuracy of GPS 

locations. Much care was made to control for spatial and 

temporal bias, in averaging site samples across a 

climatically dynamic time span, and to eliminate hydrological 

connected sites. Yet, infrequently, some site nesting 
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remained.  Additionally the data were not vigorously explored 

for seasonal diverseness.  

There are several possibilities for model improvements 

and future assessment.  ODEQ takes a “Watershed Approach” to 

define related waterways, and groupings of basins into 

regions that are similar in geography and to facilitate easier 

management of water quality (ODEQ 2013). Refining the scope 

of the model by scaling the model down to Ecoregion 4 levels, 

or ODEQS management regions north vs. south, or north, 

central, and south coast regions may improve accuracy. Final 

site selection could be explored more, possibly by completely 

eliminating nested sites, or adapting an approach similarly 

used in SPARROW nutrient modeling that takes into account an 

upstream monitoring station being used as an input to 

downstream sites (Smith et al., 1997). Another possibility 

for site selection, would to be more stringent on temporal 

sampling selection, by selecting sites that had heterogeneous 

seasonality for the study years. Through inclusion of point 

sources, such as National Pollutant Discharge Elimination 

System (NPDES) permit sites, known confined feeding 

operations, applicated sludge locations and quantities, and 

wastewater treatment plants.  Non-point sources such as 

wildlife could be estimated with tools like Bacteria Source 
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Load Calculator, or assessing housing residence age or 

sewerage types along stream ways could add more to direct 

source inputting (Zeckoski et al. 2005). Integration of the 

coarser STATSGO (1:250,000) into the missing gaps of the 

higher resolution SSURGO (1:24,000) could be a viable way to 

refine soils data.  Conversion of the percentage clays, silts, 

and sands soils types into a more general soil texture as 

defined by widely used USDA soils triangle could be 

informative.  Using different analytical techniques such as, 

logistic or generalized linear regression models might also 

provide improvements over the machine learning used here.  

The overall process here is sound, and these suggestions and 

other predictors can be added for another analysis.   

Currently, ODEQ is confronted with many TMDL’s within 

the coastal region, and a prediction models like this could 

be useful in future watershed sampling point selection.  Since 

new data are expensive to obtain, this type of generic 

approach in analyzing already acquired data could instead be 

used to inform policy makers and watershed managers of 

potential problems in Oregon’s streams, and provide avenues 

for predicting future water quality from changing land uses 

or other anthropomorphic demographics. Models such as this 

would be useful when fitting TMDL process models, by 
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highlighting spatial areas and watershed parameters that have 

the highest influence on bacteria counts.   Thus informing 

model building, fitting, and calibration for mechanistic 

models during TMDL implementation.  The major findings of 

this research are related to riparian land use, and many 

partnering organizes are generally focused on riparian 

restorations efforts in the region. But problems with 

regional sampling plans remain.  Better coordination with 

stake holder groups that are interested in continued 

improvements in local water quality means continued 

improvements in sampling plans, this is where trained 

scientists at regulatory agencies can help inform the public.  

Sampling location data tell us that many sites are focused 

around potential areas of localized concern.  But these non-

randomized or clustered sampling methods cause problems for 

researchers and managers trying to apply methodologies to 

assess a region’s water quality.  This means difficulty in 

discovering the syntactical relationships between variables 

and vectors that protect a stream’s water quality. Continued 

educational outreach to shareholders and the community about 

water quality problems, research methodologies, and keen 

awareness of lag times from implementation of best management 

practices will continue to be key in solving our water quality 
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issues.  
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APPENDIX A: GIS MODLES, R AND PYTHON SCRIPTS 

This section is intended to detail the geoprocessing and 

data processing steps taken within the ArcGIS environment, 

and its built in extension and use of the Python scripting 

language and R statistics. 

 

# Author: Paul Pettus, © 2013 ppettus@pdx.edu ppettus@unzane.com 

# R 2.15.2 statistical package 

# Purpose: Process zonal statistics for each catchment in the NHDPlus 

# Ver 2 dataset.  Land use layer rasters were summed by cell count 

# per catchment overlay then saved to .cvs files for each spatial 

# layer analyzed 

  

library(raster) 

library(rgdal) 

library(maptools) 

library(foreign) 

library(sp) 

library(methods) 

 

 

#RasterLayer with default parameters 

# Spatial layers to be processed 

 

nlcd <- raster("C:/WorkSpace/Hydro_Prj/LU_Cl_Catch.tif") 

catchments <- raster("C:/WorkSpace/Hydro_Prj/Catch.tif") 

nlcd30 <- raster("G:/GIS/Landcover/lc_n83_C_30.tif") 

nlcd100 <- raster("G:/GIS/Landcover/lc_n83_C_100.tif") 

cattle <- raster("C:/WorkSpace/Hydro_Prj/4_17/cattle.tif") 

sheep <- raster("C:/WorkSpace/Hydro_Prj/4_17/sheep.tif") 

milk <- raster("C:/WorkSpace/Hydro_Prj/4_17/milk.tif") 

chick <- raster("C:/WorkSpace/Hydro_Prj/4_17/chick.tif") 

pop <- raster("C:/WorkSpace/Hydro_Prj/4_17/pop.tif") 

ele <- raster("C:/WorkSpace/Hydro_Prj/4_17/ele.tif") 

slope <- raster("C:/WorkSpace/Hydro_Prj/4_17/slope.tif") 

slope30 <- raster("C:/WorkSpace/Hydro_Prj/4_17/slope_30.tif") 

slope100 <- raster("C:/WorkSpace/Hydro_Prj/4_17/slope_100.tif")  

slope100 <- raster("C:/WorkSpace/Hydro_Prj/4_17/slope_100_2.tif") 

slope100 <- raster("G:/GIS/Geology/slope_5-15_degree_clip_100m.tif") 

sand <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/Clip/Per_Sand_10

cm_clip.tif") 

clay <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/Clip/Per_Clay_10

cm_clip.tif") 

silt <- 
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raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/Clip/Per_Silt_10

cm_clip.tif") 

ksat <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/Clip/Ksat_10cm_c

lip.tif") 

awc <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/Clip/AWC_10cm_cl

ip.tif") 

sand30 <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/30m/Per_Sand_10c

m_clip_30m.tif") 

clay30 <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/30m/Per_Clay_10c

m_clip_30m.tif") 

silt30 <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/30m/Per_Silt_10c

m_clip_30m.tif") 

ksat30 <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/30m/Ksat_10cm_cl

ip_30m.tif") 

awc30 <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/30m/AWC_10cm_cli

p_30m.tif") 

sand100 <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/100m/Per_Sand_10

cm_clip_100m.tif") 

clay100 <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/100m/Per_Clay_10

cm_clip_100m.tif") 

silt100 <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/100m/Per_Silt_10

cm_clip_100m.tif") 

ksat100 <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/100m/Ksat_10cm_c

lip_100m.tif") 

awc100 <- 

raster("G:/GIS/Soils/gsmsoil_or/Attributes_10cm/Raster/100m/AWC_10cm_cl

ip_100m.tif") 

 

precipitation <- 

raster("C:/WorkSpace/Hydro_Prj/Climate/ppt_area_catchments.tif") 

temp_max <- 

raster("C:/WorkSpace/Hydro_Prj/Climate/tmax_area_catchments.tif") 

temp_min <- 

raster("C:/WorkSpace/Hydro_Prj/Climate/tmin_area_catchments.tif") 

 

processed.LU="C:\\Workspace\\Hydro_Prj\\TabLUArea\\Total\\crosstabLU.cs

v" 

processed.LU30="C:\\Workspace\\Hydro_Prj\\TabLUArea\\30Buf\\crosstabLU3

0.csv" 

processed.LU100="C:\\Workspace\\Hydro_Prj\\TabLUArea\\100Buf\\crosstabL

U100.csv" 

 

processed.ele="C:\\Workspace\\Hydro_Prj\\TabGeo\\Elevation\\ele.csv" 
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processed.slope="C:\\Workspace\\Hydro_Prj\\TabGeo\\Elevation\\slope.csv

" 

processed.slope30="C:\\Workspace\\Hydro_Prj\\TabGeo\\Elevation\\slope_3

0.csv" 

processed.slope100="C:\\Workspace\\Hydro_Prj\\TabGeo\\Elevation\\slope_

100.csv"  

processed.slope100="C:\\Workspace\\Hydro_Prj\\TabGeo\\Elevation\\slope_

100_2.csv" 

processed.slope100="C:\\Workspace\\Hydro_Prj\\TabGeo\\Elevation\\slope_

100_4_Gdrive.csv" 

 

 

# processed .csv files of zonal statistics 

 

processed.pop="C:\\Workspace\\Hydro_Prj\\TabPop\\pop.csv" 

processed.sheep="C:\\Workspace\\Hydro_Prj\\TabLivestock\\Sheep\\sheep.c

sv" 

processed.milk="C:\\Workspace\\Hydro_Prj\\TabLivestock\\Milk\\milk.csv" 

processed.cattle="C:\\Workspace\\Hydro_Prj\\TabLivestock\\Cattle\\cattl

e.csv" 

processed.chick="C:\\Workspace\\Hydro_Prj\\TabLivestock\\Chick\\chick.c

sv"  

 

processed.ppt="C:\\Workspace\\Hydro_Prj\\TabClimate\\ppt.csv"  

processed.tmax="C:\\Workspace\\Hydro_Prj\\TabClimate\\tmax.csv"  

processed.tmin="C:\\Workspace\\Hydro_Prj\\TabClimate\\tmin.csv"  

 

processed.sand="C:\\Workspace\\Hydro_Prj\\TabGeo\\sand.csv" 

processed.clay="C:\\Workspace\\Hydro_Prj\\TabGeo\\clay.csv" 

processed.silt="C:\\Workspace\\Hydro_Prj\\TabGeo\\silt.csv" 

processed.ksat="C:\\Workspace\\Hydro_Prj\\TabGeo\\ksat.csv" 

processed.awc="C:\\Workspace\\Hydro_Prj\\TabGeo\\awc.csv" 

 

processed.sand30="C:\\Workspace\\Hydro_Prj\\TabGeo\\sand30.csv" 

processed.clay30="C:\\Workspace\\Hydro_Prj\\TabGeo\\clay30.csv" 

processed.silt30="C:\\Workspace\\Hydro_Prj\\TabGeo\\silt30.csv" 

processed.ksat30="C:\\Workspace\\Hydro_Prj\\TabGeo\\ksat30.csv" 

processed.awc30="C:\\Workspace\\Hydro_Prj\\TabGeo\\awc30.csv" 

 

processed.sand100="C:\\Workspace\\Hydro_Prj\\TabGeo\\sand100.csv" 

processed.clay100="C:\\Workspace\\Hydro_Prj\\TabGeo\\clay100.csv" 

processed.silt100="C:\\Workspace\\Hydro_Prj\\TabGeo\\silt100.csv" 

processed.ksat100="C:\\Workspace\\Hydro_Prj\\TabGeo\\ksat100.csv" 

processed.awc100="C:\\Workspace\\Hydro_Prj\\TabGeo\\awc100.csv" 

 

 

 

#extend raster to both so they match extents 

nlcd2<-extend(nlcd, catchments, value=NA)            

catchments2<-extend(catchments, nlcd, value=NA)     #extend raster 

again 

 

#tabulate crosstab counts of cells (Not Area!) 

crossedtabfile <- crosstab(nlcd2, catchments2 , digits=0, long=FALSE, 
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useNA="always" )  

 

#flip columns and rows 

crossedtabfile2 <- as.matrix(t(crossedtabfile))  

 

#write to csv file    

write.csv(crossedtabfile2, file="C:/WorkSpace/crosstabLU.csv") 

 

areacosstab<-function(zones, catch, filelocation){ 

  rasterextend1<-extend(zones, catch, value=NA) 

  rasterextend2<-extend(catch, zones, value=NA) 

  crossedtabfile <- crosstab(rasterextend1, rasterextend2 , digits=0, 

long=FALSE, useNA="always" ) 

  crossedtabfile2 <- as.matrix(t(crossedtabfile)) #Flip rows for 

columns 

  write.csv(crossedtabfile2, file=filelocation) 

  return("Done") 

  } 

 

areazonalsum<-function(types, catch, filelocation){ 

  rasterextend1<-extend(types, catch, value=NA) 

  rasterextend2<-extend(catch, types, value=NA)   

  zonesumtabfile <- zonal(rasterextend1, rasterextend2, fun=sum, 

digits=100, na.rm=TRUE) 

  #zonesumtabfile2 <- as.matrix(t(zonesumtabfile)) 

  write.csv(zonesumtabfile, file=filelocation) 

  return("Done") 

  } 

#This is broken see above for fix   

areazonalmean<-function(Ltypes, catch, filelocation){ 

  rasterextend1<-extend(Ltypes, catch, value=NA) 

  rasterextend2<-extend(catch, Ltypes, value=NA)   

  zonemeantabfile <- zonal(rasterextend1, rasterextend2, fun=mean, 

digits=100, na.rm=TRUE) 

  #zonesumtabfile2 <- as.matrix(t(zonesumtabfile)) 

  write.csv(zonemeantabfile, file=filelocation) 

  return("Done") 

  } 

 

 

# function allows for processing multiple files at once 

# Warning processing large files, and qty’s of files is exhaustive  

happytimes<-function(){ 

  #comreturn<-areacosstab(nlcd, catchments, processed.LU) 

  #comreturn2<-areacosstab(nlcd30, catchments, processed.LU30) 

  #comreturn2<-areacosstab(nlcd100, catchments, processed.LU100) 

  #comreturn2<-areazonalsum(pop, catchments, processed.pop)  

  #comreturn2<-areazonalsum(chick, catchments, processed.chick) 

    

  #comreturn2<-areazonalsum(sheep, catchments, processed.sheep)  

  #comreturn2<-areazonalsum(cattle, catchments, processed.cattle)  

  #comreturn2<-areazonalsum(milk, catchments, processed.milk)  

   

  #comreturn2<-areazonalmean(ele, catchments, processed.ele)  
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  #comreturn2<-areazonalmean(slope, catchments, processed.slope)    

  #comreturn3<-areazonalmean(slope30, catchments, processed.slope30) 

  comreturn4<-areazonalsum(slope100, catchments, processed.slope100) 

  comreturn4<-areazonalmean(slope100, catchments, processed.slope100) 

   

  #comreturn4<-areazonalmean(precipitation, catchments, processed.ppt)  

  #comreturn4<-areazonalmean(temp_max, catchments, processed.tmax) 

  #comreturn4<-areazonalmean(temp_min, catchments, processed.tmin) 

   

  #comreturn4<-areazonalmean(sand, catchments, processed.sand) 

  #comreturn4<-areazonalmean(sand30, catchments, processed.sand30) 

  #comreturn4<-areazonalmean(sand100, catchments, processed.sand100) 

   

  #comreturn4<-areazonalmean(clay, catchments, processed.clay) 

  #comreturn4<-areazonalmean(clay30, catchments, processed.clay30) 

  comreturn4<-areazonalmean(clay100, catchments, processed.clay100) 

   

  #comreturn4<-areazonalmean(silt, catchments, processed.silt) 

  #comreturn4<-areazonalmean(silt30, catchments, processed.silt30) 

  comreturn4<-areazonalmean(silt100, catchments, processed.silt100) 

   

  #comreturn4<-areazonalmean(ksat, catchments, processed.ksat) 

  #comreturn4<-areazonalmean(ksat30, catchments, processed.ksat30) 

  comreturn4<-areazonalmean(ksat100, catchments, processed.ksat100) 

   

  #comreturn4<-areazonalmean(awc, catchments, processed.awc) 

  #comreturn4<-areazonalmean(awc30, catchments, processed.awc30) 

  comreturn4<-areazonalmean(awc100, catchments, processed.awc100) 

   

  } 

 

h2<-happytimes() 

 

 

# Author: Paul Pettus, © 2013 ppettus@pdx.edu ppettus@unzane.com 

# Python 2.6 

# Purpose: Generate a to:from catchment data dictionary list for each  

# catchment in NHDPlus PlusFlow.dbf database.  This dictionary list 

# can then be used to aggregate catchment attributes 

 

# Import system modules 

import os, csv 

from collections import deque, defaultdict 

 

def children(token, tree): 

#    "returns a list of every child" 

    #print ("Token:", token) 

    visited = set() 

    to_crawl = list([token]) 

    to_crawl2 = list([]) 

    #to_crawl = deque([token]) 

    #print (visited) 
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    while to_crawl: 

        current = to_crawl.pop()  #was .popleft 

        if current in visited: 

            continue    

        to_crawl2.append(current) 

        visited.add(current) 

        node_children = set(tree[current]) 

        to_crawl.extend(node_children - visited)   #was .extendleft 

        #to_crawl2.append(node_children - visited) 

        #print("visited:",visited) 

    #testdic = dict() 

    #testdic = visited 

    #return (testdic) 

    #print ("to_crawl2:",to_crawl2) 

    #print ("list(visited): ",list(visited)) 

    #return list(visited) 

    return (to_crawl2) 

 

Flow = dict() 

#walking the NHDPlus Flow table 

#rows = 

arcpy.SearchCursor("G:/GIS/NHDPlus/NHDPlusPN/NHDPlusPN/NHDPlus17/NHDPlu

sAttributes/PlusFlow.dbf") 

 

PlusFlow = ("C:/WorkSpace/Hydro_Prj/4_17/PlusFlow.csv") 

#PlusFlow = ("C:\\GIS\\Workspace\\PF.txt.txt") #epa 

#PlusFlow = ("C:/WorkSpace/Hydro_Prj/4_17/test_to_from.csv") 

#rows = open(PlusFlow, 'r') 

 

 

with open(PlusFlow, 'rb') as csvfile: 

    spamreader = csv.DictReader(csvfile, delimiter=',') 

    for row in spamreader: 

        ToCOM = row['TOCOMID'] 

        #print(row['TOCOMID']) 

        FromCOM = row['FROMCOMID'] 

        if int(ToCOM) and int(FromCOM) != 0: 

            Flow[FromCOM] = ToCOM 

    #print("Done finding") 

        #print("Found Line")  

         

d2 = defaultdict(list) 

for k,v in Flow.items(): 

    d2[v].append(k)     

Full_Flow = dict() 

for items in d2.keys(): 

    Full_Flow[items] = children(items, d2) 

#print(Full_Flow) 

print("Done Full_Full") 

 

#outfile = open("C:/WorkSpace/Hydro_Prj/4_17/test.csv",'w') 

#outfile2 = open("C:/GIS/WorkSpace/walk_test2.csv",'w') #epa 

outfile2 = open("C:/WorkSpace/Hydro_Prj/4_17/walk_test_5-24.csv",'w') 

#home 
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print("outfile opened") 

 

#infile= ("C:/GIS/WorkSpace/catchments.csv", 'r') #EPA 

infile= ("C:/WorkSpace/Hydro_Prj/4_17/catchments.csv") #home 

#infile= ("C:/WorkSpace/Hydro_Prj/4_17/catch_test.csv") 

print("infile opened") 

 

catchments = [str(line.rstrip()) for line in open(infile, 'r')] 

print("Input catchments") 

 

#infile = csv.reader("C:/GIS/WorkSpace/catchments.csv", delimiter=',') 

#outfile.write("HUC\n") 

 

 

#data = ["value %d" % i for i in range(1,4)] 

 

out = csv.writer(outfile2, delimiter=',', lineterminator='\n') 

 

 

#for i in catchments: 

#    outfile.write(str(i)) 

#    outfile.write(",") 

#    outfile.write("\n") 

print("Starting catchments") 

 

for i in catchments: 

    x = list(i) 

    #x.append('\n') 

    #print(x) 

    value = Full_Flow.get(i) 

    #print(value) 

    if str(value) == 'None': 

        print (i) 

        print("We found a None") 

        #outfile.write(str(x)) 

        #outfile.write(str(x)) 

        #outfile.write(",") 

        #outfile.write("\n") 

        #print("But added it any ways") 

        #data = ["value %d" % i for i in range(x)] 

        #out. 

        out.writerow([i]) 

    else: 

        hucs = Full_Flow[i] 

        #print(hucs) 

        type(hucs) 

        #for huc in hucs: 

            #outfile.write(str(huc)) 

            #outfile.write(",") 

        out.writerow(hucs)   

        #outfile.write("\n") 

        #print("Successful run through HUCS. We added i ...") 

outfile2.close()  

print("Done") 
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#catchments.close() 

print("Done") 

 

 

# Author: Paul Pettus, © 2013 ppettus@pdx.edu ppettus@unzane.com 

# Python 2.6 

# Purpose: From the to:from catchment data dictionary, created 

# in the previous script this dictionary list 

# can then be used to aggregate catchment attributes. 

# Each catchment is weighted by it total contributing area 

import sys, os, csv 

 

#LU30 = open("C:/WorkSpace/Hydro_Prj/4_17/test.csv",'r') 

#LU100 = open("C:/WorkSpace/Hydro_Prj/4_17/test.csv",'r') 

 

#**********************************************************************

*******************************************************# 

#This fills the watershed characteristic dictionary 

#LUinfile = open("C:/WorkSpace/Hydro_Prj/5_1/crosstabLU.csv",'r') 

#Probably be best to make one dictionary with all attributes 

LUinfile = open("E:/Python/Input/catch_test_LU.csv",'r') 

Landuse = csv.DictReader(LUinfile) 

 

LU_Sums = {}                           

for row in Landuse: 

    key = row.pop('Catch_ID') 

    if key in LU_Sums: 

        # implement your duplicate row handling here 

        pass 

    LU_Sums[key] = row 

#print LU_Sums 

#test = list(result.keys()) 

#**********************************************************************

*******************************************************# 

 

 

#**********************************************************************

*******************************************************# 

#For each row of the collective catchment file 

#look up each catchment in the land use stats file 

#sum the area 

#create area weight based on total catchments 

 

FLOWinfile = open("E:/Python/Input/test2.csv",'r') 

#FLOWinfile = open("C:/WorkSpace/Hydro_Prj/5_1/test_5_1.csv",'r') 

#FLOWinfile.next()  #Needed to move past first line 

 

#outfile = open("C:/WorkSpace/Hydro_Prj/4_17/WeightedCatches.csv", 'w') 

outfile = open("E:/Python/Input/WeightedCatches2z.csv", 'w') 

outfile.write("Catch_ID,") 

#fileHeaderlist= list(LU_Sums['23735707'])  # Creating column headers 

########## CHange this back too!!!!! 

fileHeaderlist= list(LU_Sums['1'])  # Creating column headers       

########## CHange this back too!!!! 
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for eachcolumn in fileHeaderlist: 

    outfile.write(eachcolumn) 

    outfile.write(',') 

outfile.write('\n') 

 

headlength = [] 

for count in fileHeaderlist: 

    headlength.append(0) 

 

for line in FLOWinfile:  

    parts = line.split(',') 

    catchmentNumbers = [int(L) for L in parts] 

    HUC_ID = 0 

    allCells = 0 

    matrix = [fileHeaderlist,headlength] 

    p1 = 0 

    for catchment in catchmentNumbers: 

        print ("catchment loop", catchment) 

        value = LU_Sums.get(str(catchment)) 

        if allCells == 0: 

            HUC_ID = catchment   

        catch_stats = LU_Sums[str(catchment)] 

        cells = 0 

        p2 = 0 

        for (k,v) in catch_stats.items(): 

            matrix[1][p2] = matrix[1][p2] + int(v) 

            cells = cells + int(v) 

            p2 = p2 + 1 

        allCells = allCells + cells 

    outfile.write(str(HUC_ID)) 

    for x in fileHeaderlist: 

        outfile.write(',') 

        outfile.write(str(matrix[1][p1])) 

        p1 = p1 + 1 

    outfile.write('\n') 

outfile.close()     

#**********************************************************************

*******************************************************# 

 

print ("DONE") 
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