259 research outputs found

    The botanical biofiltration of VOCs with active airflow: is removal efficiency related to chemical properties?

    Full text link
    © 2019 Elsevier Ltd Botanical biofiltration using active green walls is showing increasing promise as a viable method for the filtration of volatile organic compounds (VOCs) from ambient air; however there is a high level of heterogeneity reported amongst VOC removal efficiencies, and the reasons for these observations have yet to be explained. Comparisons of removal efficiencies amongst studies is also difficult due to the use of many different VOCs, and systems that have been tested under different conditions. The current work describes a procedure to determine whether some of these differences may be related to the chemical properties of the VOCs themselves. This work used an active green wall system to test the single pass removal efficiency (SPRE) of nine different VOCs (acetone, benzene, cyclohexane, ethanol, ethyl acetate, hexane, isopentane, isopropanol and toluene) and explored which chemical properties were meaningful predictor variables of their biofiltration efficiencies. Ethanol was removed most efficiently (average SPRE of 96.34% ± 1.61), while benzene was least efficiently removed (average SPRE of 19.76% ± 2.93). Multiple stepwise linear regression was used to determine that the dipole moment and molecular mass were significant predictors of VOC SPRE, in combination accounting for 54.6% of the variability in SPREs amongst VOCs. The octanol water partition coefficient, proton affinity, Henry's law constant and vapour pressure were not significant predictors of SPRE. The most influential predictor variable was the dipole moment, alone accounting for 49.8% of the SPRE variability. The model thus allows for an estimation of VOC removal efficiency based on a VOC's chemical properties, and supports the idea that system optimisation could be achieved through methods that promote both VOC partitioning into the biofilter's aqueous phase, and substrate development to enhance adsorption.

    Future therapeutic targets in rheumatoid arthritis?

    Get PDF
    Rheumatoid arthritis (RA) is a chronic inflammatory disease characterized by persistent joint inflammation. Without adequate treatment, patients with RA will develop joint deformity and progressive functional impairment. With the implementation of treat-to-target strategies and availability of biologic therapies, the outcomes for patients with RA have significantly improved. However, the unmet need in the treatment of RA remains high as some patients do not respond sufficiently to the currently available agents, remission is not always achieved and refractory disease is not uncommon. With better understanding of the pathophysiology of RA, new therapeutic approaches are emerging. Apart from more selective Janus kinase inhibition, there is a great interest in the granulocyte macrophage-colony stimulating factor pathway, Bruton's tyrosine kinase pathway, phosphoinositide-3-kinase pathway, neural stimulation and dendritic cell-based therapeutics. In this review, we will discuss the therapeutic potential of these novel approaches

    Drug-Class Specific Impact of Antivirals on the Reproductive Capacity of HIV

    Get PDF
    Predictive markers linking drug efficacy to clinical outcome are a key component in the drug discovery and development process. In HIV infection, two different measures, viral load decay and phenotypic assays, are used to assess drug efficacy in vivo and in vitro. For the newly introduced class of integrase inhibitors, a huge discrepancy between these two measures of efficacy was observed. Hence, a thorough understanding of the relation between these two measures of drug efficacy is imperative for guiding future drug discovery and development activities in HIV. In this article, we developed a novel viral dynamics model, which allows for a mechanistic integration of the mode of action of all approved drugs and drugs in late clinical trials. Subsequently, we established a link between in vivo and in vitro measures of drug efficacy, and extract important determinants of drug efficacy in vivo. The analysis is based on a new quantity—the reproductive capacity—that represents in mathematical terms the in vivo analog of the read-out of a phenotypic assay. Our results suggest a drug-class specific impact of antivirals on the total amount of viral replication. Moreover, we showed that the (drug-)target half life, dominated by immune-system related clearance processes, is a key characteristic that affects both the emergence of resistance as well as the in vitro–in vivo correlation of efficacy measures in HIV treatment. We found that protease- and maturation inhibitors, due to their target half-life, decrease the total amount of viral replication and the emergence of resistance most efficiently

    Treatment of two postoperative endophthalmitis cases due to Aspergillus flavus and Scopulariopsis spp. with local and systemic antifungal therapy

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Endophthalmitis is the inflammatory response to invasion of the eye with bacteria or fungi. The incidence of endophthalmitis after cataract surgery varies between 0.072–0.13 percent. Treatment of endophthalmitis with fungal etiology is difficult.</p> <p>Case Presentation</p> <p><b>Case 1: </b>A 71-year old male diabetic patient developed postoperative endophthalmitis due to <it>Aspergillus flavus</it>. The patient was treated with topical amphotericin B ophthalmic solution, intravenous (IV) liposomal amphotericin-B and caspofungin following vitrectomy.</p> <p><b>Case 2: </b>A 72-year old male cachectic patient developed postoperative endophthalmitis due to <it>Scopulariopsis </it>spp. The patient was treated with topical and IV voriconazole and caspofungin.</p> <p>Conclusion</p> <p><it>Aspergillus </it>spp. are responsible of postoperative fungal endophthalmitis. Endophthalmitis caused by <it>Scopulariopsis </it>spp. is a very rare condition. The two cases were successfully treated with local and systemic antifungal therapy.</p

    Polarisation of a T-helper cell immune response by activation of dendritic cells with CpG-containing oligonucleotides: a potential therapeutic regime for bladder cancer immunotherapy

    Get PDF
    Intravesical bacillus Calmette-Guerin (BCG) is a treatment for transitional cell carcinoma (TCC) and carcinoma in situ (cis) of the urinary bladder, but some patients remain refractory. The mechanism of cancer clearance is not known, but T cells are thought to play a contributory role. Tissue dendritic cells (DCs) are known to initiate antigen-specific immune responses following activation of receptors, which recognise molecular patterns on the surface of microorganisms. A family of these receptors, the toll-like receptors (TLRs), are also crucial for activating DC to produce cytokines that polarise the T-cell response towards a T helper (Th)1 or Th2 phenotype. This study compared the potential of intact BCG to activate DC with that of the defined TLR4 ligand lipopolysaccharide (LPS) and the TLR9 ligand CpG-oligonucleotide. It was found that all three stimuli efficiently activated normal DC, but cells expressing a mutant TLR4 responded poorly to stimulation with LPS. Importantly, stimulation with BCG induced both IL-12 and IL-10, suggesting subsequent development of a poorly focused T-cell immune response containing both Th1 and Th2 immune function. By contrast, LPS- and CpG-oligonucleotides induced only IL-12, indicating the potential to produce a Th1 response, which is likely to clear cancer most efficiently. Given the toxicity of LPS, our data suggest that CpG-oligonucleotides may be beneficial for intravesical therapy of bladder cancer

    Serum amyloid A inhibits RANKL-induced osteoclast formation

    Get PDF
    When mouse bone marrow-derived macrophages were stimulated with serum amyloid A (SAA), which is a major acute-phase protein, there was strong inhibition of osteoclast formation induced by the receptor activator of nuclear factor kappaB ligand. SAA not only markedly blocked the expression of several osteoclast-associated genes (TNF receptor-associated factor 6 and osteoclast-associated receptor) but also strongly induced the expression of negative regulators (MafB and interferon regulatory factor 8). Moreover, SAA decreased c-fms expression on the cell surface via shedding of the c-fms extracellular domain. SAA also restrained the fusion of osteoclast precursors by blocking intracellular ATP release. This inhibitory response of SAA is not mediated by the well-known SAA receptors (formyl peptide receptor 2, Toll-like receptor 2 (TLR2) or TLR4). These findings provide insight into a novel inhibitory role of SAA in osteoclastogenesis and suggest that SAA is an important endogenous modulator that regulates bone homeostasis.open

    IL-17RA Signaling Amplifies Antibody-Induced Arthritis

    Get PDF
    Objective: To investigate the role of IL-17RA signaling in the effector phase of inflammatory arthritis using the K/BxN serumtransfer model. Methods: Wild-type and Il17ra 2/2 mice were injected with serum isolated from arthritic K/BxN mice and their clinical score was recorded daily. Mice were also harvested on days 12 and 21 and ankles were analyzed for cytokine and chemokine mRNA expression by qPCR on day 12 and for bone and cartilage erosions by histology on day 21, respectively. The induction of cytokine and chemokine expression levels by IL-17A in synovial-like fibroblasts was also analyzed using qPCR. Results: Il17ra 2/2 mice were partially protected from clinical signs of arthritis and had markedly fewer cartilage and bone erosions. The expression of several pro-inflammatory mediators, including the chemokines KC/CXCL1, MIP-2/CXCL2, LIX/ CXCL5 MIP-1c/CCL9, MCP-3/CCL7, MIP-3a/CCL20, the cytokines IL-1b, IL-6, RANKL and the matrix metalloproteinases MMP2, MMP3, and MMP13 were decreased in the ankles of Il17ra 2/2 mice compared to wild-type mice. Many of these proinflammatory genes attenuated in the ankles of Il17ra 2/2 mice were shown to be directly induced by IL-17A in synovial fibroblasts in vitro. Conclusions: IL-17RA signaling plays a role as an amplifier of the effector phase of inflammatory arthritis. This effect is likel

    Immunosuppressive effects of radiation on human dendritic cells: reduced IL-12 production on activation and impairment of naïve T-cell priming

    Get PDF
    Dendritic cells (DC) are professional antigen-presenting cells (APC) of the immune system, uniquely able to prime naïve T-cell responses. They are the focus of a range of novel strategies for the immunotherapy of cancer, a proportion of which include treating DC with ionising radiation to high dose. The effects of radiation on DC have not, however, been fully characterised. We therefore cultured human myeloid DC from CD14+ precursors, and studied the effects of ionising radiation on their phenotype and function. Dendritic cells were remarkably resistant against radiation-induced apoptosis, showed limited changes in surface phenotype, and mostly maintained their endocytic, phagocytic and migratory capacity. However, irradiated DC were less effective in a mixed lymphocyte reaction, and on maturation produced significantly less IL-12 than unirradiated controls, while IL-10 secretion was maintained. Furthermore, peptide-pulsed irradiated mature DC were less effective at naïve T-cell priming, stimulating fewer effector cells with lower cytotoxicity against antigen-specific targets. Hence irradiation of DC in vitro, and potentially in vivo, has a significant impact on their function, and may shift the balance between T-cell activation and tolerisation in DC-mediated immune responses
    corecore