37 research outputs found

    Surface Effects on Anisotropic Photoluminescence in One-Dimensional Organic Metal Halide Hybrids

    Full text link
    One-dimensional (1D) organic metal halide hybrids exhibit strongly anisotropic optical properties, highly efficient light emission, and large Stokes shift, holding promises for novel photodetection and lighting applications. However, the fundamental mechanisms governing their unique optical properties and in particular the impacts of surface effects are not understood. Here, we investigate 1D C4N2H14PbBr4 by polarization-dependent time-averaged and time-resolved photoluminescence (TRPL) spectroscopy, as a function of photoexcitation energy. Surprisingly, we find that the emission under photoexcitation polarized parallel to the 1D metal halide chains can be either stronger or weaker than that under perpendicular polarization, depending on the excitation energy. We attribute the excitation-energy-dependent anisotropic emission to fast surface recombination, supported by first-principles calculations of optical absorption in this material. The fast surface recombination is directly confirmed by TRPL measurements, when the excitation is polarized parallel to the chains. Our comprehensive studies provide a more complete picture for a deeper understanding of the optical anisotropy in 1D organic metal halide hybrids

    Controllable Strain-driven Topological Phase Transition and Dominant Surface State Transport in High-Quality HfTe5 Samples

    Full text link
    Controlling materials to create and tune topological phases of matter could potentially be used to explore new phases of topological quantum matter and to create novel devices where the carriers are topologically protected. It has been demonstrated that a trivial insulator can be converted into a topological state by modulating the spin-orbit interaction or the crystal lattice. However, there are limited methods to controllably and efficiently tune the crystal lattice and at the same time perform electronic measurements at cryogenic temperatures. Here, we use large controllable strain to demonstrate the topological phase transition from a weak topological insulator phase to a strong topological insulator phase in high-quality HfTe5 samples. After applying high strain to HfTe5 and converting it into a strong topological insulator, we found that the sample's resistivity increased by more than two orders of magnitude (24,000%) and that the electronic transport is dominated by the topological surface states at cryogenic temperatures. Our findings show that HfTe5 is an ideal material for engineering topological properties, and it could be generalized to study topological phase transitions in van der Waals materials and heterostructures. These results can pave the way to create novel devices with applications ranging from spintronics to fault-tolerant topologically protected quantum computers

    Exceptional electronic transport and quantum oscillations in thin bismuth crystals grown inside van der Waals materials

    Full text link
    Confining materials to two-dimensional forms changes the behavior of electrons and enables new devices. However, most materials are challenging to produce as uniform thin crystals. Here, we present a new synthesis approach where crystals are grown in a nanoscale mold defined by atomically-flat van der Waals (vdW) materials. By heating and compressing bismuth in a vdW mold made of hexagonal boron nitride (hBN), we grow ultraflat bismuth crystals less than 10 nanometers thick. Due to quantum confinement, the bismuth bulk states are gapped, isolating intrinsic Rashba surface states for transport studies. The vdW-molded bismuth shows exceptional electronic transport, enabling the observation of Shubnikov-de Haas quantum oscillations originating from the (111) surface state Landau levels, which have eluded previous studies. By measuring the gate-dependent magnetoresistance, we observe multi-carrier quantum oscillations and Landau level splitting, with features originating from both the top and bottom surfaces. Our vdW-mold growth technique establishes a platform for electronic studies and control of bismuth's Rashba surface states and topological boundary modes. Beyond bismuth, the vdW-molding approach provides a low-cost way to synthesize ultrathin crystals and directly integrate them into a vdW heterostructure

    Correlated Excitonic Signatures in a Nanoscale van der Waals Antiferromagnet

    Full text link
    Composite quasi-particles with emergent functionalities in spintronic and quantum information science can be realized in correlated materials due to entangled charge, spin, orbital, and lattice degrees of freedom. Here we show that by reducing the lateral dimension of correlated antiferromagnet NiPS3 flakes to tens of nanometers, we can switch-off the bulk spin-orbit entangled exciton in the near-infrared (1.47 eV) and activate visible-range (1.8 to 2.2 eV) transitions with charge-transfer character. These ultra-sharp lines (<120 ueV at 4.2 K) share the spin-correlated nature of the bulk exciton by displaying a Neel temperature dependent linear polarization. Furthermore, exciton photoluminescence lineshape analysis reveals a polaronic character via coupling with at-least 3 phonon modes and a comb-like Stark effect through discretization of charges in each layer. These findings augment the knowledge on the many-body nature of excitonic quasi-particles in correlated antiferromagnets and also establish the nanoscale platform as promising for maturing integrated magneto-optic devices

    Cobalt Doping as a Pathway To Stabilize the Solid-State Conversion Chemistry of Manganese Oxide Anodes in Li-Ion Batteries

    No full text
    Metal oxides have been widely studied in recent years to replace commercial graphite anodes in lithium ion batteries. Among the metal oxides, manganese oxide has a high theoretical capacity, low cost, and is environmentally friendly. However, many MnO materials have shown limited reaction reversibility and poor conversion kinetics. To understand why, in this paper we investigate the mechanism, kinetics, and reversibility for the solid-state conversion reaction of MnO with Li+. We definitively show, for the first time, that during repeated reaction cycles, multiple reaction pathways occur that lead not only to the reformation of MnO but also higher oxidation-state Mn3O4—which when combined with the poor intrinsic electronic conductivity of both manganese oxide species results in a rapid loss in the amount of charge that can be stored in these materials. Learning this, the approach in this study was to use cobalt doping to concomitantly stabilize the redox behavior of manganese (allowing for the gradual transformation of MnO to Mn3O4 over time) and to increase the intraparticle electronic conductivity of the active layer. The result is an active material, Mn0.9Co0.1O, that exhibits excellent charge stability and conversion kinetics (near 600 mAh/g at a rate of 400 mA/g), even over hundreds of reaction cycles

    Reexamination of basal plane thermal conductivity of suspended graphene samples measured by electro-thermal micro-bridge methods

    No full text
    Thermal transport in suspended graphene samples has been measured in prior works and this work with the use of a suspended electro-thermal micro-bridge method. These measurement results are analyzed here to evaluate and eliminate the errors caused by the extrinsic thermal contact resistance. It is noted that the room-temperature thermal resistance measured in a recent work increases linearly with the suspended length of the single-layer graphene samples synthesized by chemical vapor deposition (CVD), and that such a feature does not reveal the failure of Fourier’s law despite the increase in the reported apparent thermal conductivity with length. The re-analyzed apparent thermal conductivity of a single-layer CVD graphene sample reaches about 1680 ± 180 W m−1 K−1 at room temperature, which is close to the highest value reported for highly oriented pyrolytic graphite. In comparison, the apparent thermal conductivity values measured for two suspended exfoliated bi-layer graphene samples are about 880 ± 60 and 730 ± 60 Wm−1K−1 at room temperature, and approach that of the natural graphite source above room temperature. However, the low-temperature thermal conductivities of these suspended graphene samples are still considerably lower than the graphite values, with the peak thermal conductivities shifted to much higher temperatures. Analysis of the thermal conductivity data reveals that the low temperature behavior is dominated by phonon scattering by polymer residue instead of by the lateral boundary

    Ultrathin Graphite Foam: A Three-Dimensional Conductive Network for Battery Electrodes

    No full text
    We report the use of free-standing, lightweight, and highly conductive ultrathin graphite foam (UGF), loaded with lithium iron phosphate (LFP), as a cathode in a lithium ion battery. At a high charge/discharge current density of 1280 mA g(-1), the specific capacity of the LFP loaded on UGF was 70 mAh g(-1), while LFP loaded on Al foil failed. Accounting for the total mass of the electrode, the maximum specific capacity of the UGF/LFP cathode was 23% higher than that of the Al/LFP cathode and 170% higher than that of the Ni-foam/LFP cathode. Using UGF, both a higher rate capability and specific capacity can be achieved simultaneously, owing to its conductive (similar to 1.3 x 10(5) S m(-1) at room temperature) and three-dimensional lightweight (similar to 9.5 mg cm(-3)) graphitic structure. Meanwhile, UGF presents excellent electrochemical stability comparing to that of Al and Ni foils, which are generally used as conductive substrates in lithium ion batteries. Moreover, preparation of the UGF electrode was facile, cost-effective, and compatible with various electrochemically active materials
    corecore