35 research outputs found
Natural history of Christianson syndrome
Christianson syndrome is an X-linked mental retardation syndrome characterized by microcephaly, impaired ocular movement, severe global developmental delay, hypotonia which progresses to spasticity, and early onset seizures of variable types. Gilfillan et al. [2008] reported mutations in SLC9A6, the gene encoding the sodium/hydrogen exchanger NHE6, in the family first reported and in three others. They also noted the clinical similarities to Angelman syndrome and found cerebellar atrophy on MRI and elevated glutamate/glutamine in the basal ganglia on MRS. Here we report on nonsense mutations in two additional families. The natural history is detailed in childhood and adult life, the similarities to Angelman syndrome confirmed, and the MRI/MRS findings documented in three affected boys
X-linked Angelman-like syndrome caused by Slc9a6 knockout in mice exhibits evidence of endosomal–lysosomal dysfunction
Mutations in solute carrier family 9 isoform 6 on chromosome Xq26.3 encoding sodium–hydrogen exchanger 6, a protein mainly expressed in early and recycling endosomes are known to cause a complex and slowly progressive degenerative human neurological disease. Three resulting phenotypes have so far been reported: an X-linked Angelman syndrome-like condition, Christianson syndrome and corticobasal degeneration with tau deposition, with each characterized by severe intellectual disability, epilepsy, autistic behaviour and ataxia. Hypothesizing that a sodium–hydrogen exchanger 6 deficiency would most likely disrupt the endosomal–lysosomal system of neurons, we examined Slc9a6 knockout mice with tissue staining and related techniques commonly used to study lysosomal storage disorders. As a result, we found that sodium–hydrogen exchanger 6 depletion leads to abnormal accumulation of GM2 ganglioside and unesterified cholesterol within late endosomes and lysosomes of neurons in selective brain regions, most notably the basolateral nuclei of the amygdala, the CA3 and CA4 regions and dentate gyrus of the hippocampus and some areas of cerebral cortex. In these select neuronal populations, histochemical staining for β-hexosaminidase activity, a lysosomal enzyme involved in the degradation of GM2 ganglioside, was undetectable. Neuroaxonal dystrophy similar to that observed in lysosomal disease was observed in the cerebellum and was accompanied by a marked and progressive loss of Purkinje cells, particularly in those lacking the expression of Zebrin II. On behavioural testing, Slc9a6 knockout mice displayed a discrete clinical phenotype attributable to motor hyperactivity and cerebellar dysfunction. Importantly, these findings show that sodium–hydrogen exchanger 6 loss of function in the Slc9a6-targeted mouse model leads to compromise of endosomal–lysosomal function similar to lysosomal disease and to conspicuous neuronal abnormalities in specific brain regions, which in concert could provide a unified explanation for the cellular and clinical phenotypes in humans with SLC9A6 mutations
Haploinsufficiency of two histone modifier genes on 6p22.3, ATXN1 and JARID2, is associated with intellectual disability
BACKGROUND: Nineteen patients with deletions in chromosome 6p22-p24 have been published so far. The syndromic phenotype is varied, and includes intellectual disability, behavioural abnormalities, dysmorphic features and structural organ defects. Heterogeneous deletion breakpoints and sizes (1–17 Mb) and overlapping phenotypes have made the identification of the disease causing genes challenging. We suggest JARID2 and ATXN1, both harbored in 6p22.3, as disease causing genes. METHODS AND RESULTS: We describe five unrelated patients with de novo deletions (0.1-4.8 Mb in size) in chromosome 6p22.3-p24.1 detected by aCGH in a cohort of approximately 3600 patients ascertained for neurodevelopmental disorders. Two patients (Patients 4 and 5) carried non-overlapping deletions that were encompassed by the deletions of the remaining three patients (Patients 1–3), indicating the existence of two distinct dosage sensitive genes responsible for impaired cognitive function in 6p22.3 deletion-patients. The smallest region of overlap (SRO I) in Patients 1–4 (189 kb) included the genes JARID2 and DTNBP1, while SRO II in Patients 1–3 and 5 (116 kb) contained GMPR and ATXN1. Patients with deletion of SRO I manifested variable degrees of cognitive impairment, gait disturbance and distinct, similar facial dysmorphic features (prominent supraorbital ridges, deep set eyes, dark infraorbital circles and midface hypoplasia) that might be ascribed to the haploinsufficiency of JARID2. Patients with deletion of SRO II showed intellectual disability and behavioural abnormalities, likely to be caused by the deletion of ATXN1. Patients 1–3 presented with lower cognitive function than Patients 4 and 5, possibly due to the concomitant haploinsufficiency of both ATXN1 and JARID2. The chromatin modifier genes ATXN1 and JARID2 are likely candidates contributing to the clinical phenotype in 6p22-p24 deletion-patients. Both genes exert their effect on the Notch signalling pathway, which plays an important role in several developmental processes. CONCLUSIONS: Patients carrying JARID2 deletion manifested with cognitive impairment, gait disturbance and a characteristic facial appearance, whereas patients with deletion of ATXN1 seemed to be characterized by intellectual disability and behavioural abnormalities. Due to the characteristic facial appearance, JARID2 haploinsufficiency might represent a clinically recognizable neurodevelopmental syndrome