133 research outputs found

    Innovation ecosystems for youth agrifood entrepreneurship in the mediterranean region

    Get PDF
    This paper is the outcome of a reflection on the MIP report 2020, a collection of information and data used to describe the scenario on youth innovation and entrepreneurship in agrifood sector in Mediterranean countries. In particular, it highlights the need to study innovation in Mediterranean regions under the lens of social and institutional innovation. It is argued that social and institutional innovation are key drivers of the development of Innovation Ecosystems. The paper discusses the main findings ‒ and relevant case studies ‒ of the MIP report, with a specific attention to the role of the Innovation Support Organizations. It is noted that while in the field of institutional innovation there are signs of official activity, in the field of social innovation there is no or very limited attempt to embody social innovation into national policy frameworks. However, the article identifies interesting bottom-up initiatives that may constitute the basis for new policy initiatives

    Bi-allelic variants in MTMR5/SBF1 cause Charcot-Marie-Tooth type 4B3 featuring mitochondrial dysfunction

    Get PDF
    Background: Charcot-Marie-Tooth disease (CMT) type 4B3 (CMT4B3) is a rare form of genetic neuropathy associated with variants in the MTMR5/SBF1 gene. MTMR5/SBF1 is a pseudophosphatase predicted to regulate endo-lysosomal trafficking in tandem with other MTMRs. Although almost ubiquitously expressed, pathogenic variants primarily impact on the peripheral nervous system, corroborating the involvement of MTMR5/SBF1 and its molecular partners in Schwann cells-mediated myelinization. Case presentation: We report a case of severe CMT4B3 characterized by early-onset motor and axonal polyneuropathy in an Italian child in absence of any evidence of brain and spine MRI abnormalities or intellectual disability and with a biochemical profile suggestive of mitochondrial disease. Using an integrated approach combining both NGS gene panels and WES analysis, we identified two novel compound heterozygous missense variants in MTMR5/SBF1 gene, p.R763H (c.2291G > A) and p.G1064E (c.3194G > A). Studies in muscle identified partial defects of oxidative metabolism. Conclusion: We describe the first case of an early onset severe polyneuropathy with motor and axonal involvement, due to recessive variants in the MTMR5/SBF1 gene, with no evidence of brain and spine MRI abnormalities, intellectual disability, no clinical and neurophysiological evidences of distal sensory impairment, and rapid neuromuscular deterioration. This report suggests that MTMR5/SBF1 should be considered in cases of infantile-onset CMT with secondary mitochondrial dysfunction

    Er:YAG Laser and Fractured Incisor Restorations: An In Vitro

    Get PDF
    Introduction. The aim of this study was to analyse the effects of an Er:YAG laser on enamel and dentine in cases of dental restorations involving fractured teeth, utilizing the dental fragment. Materials and Methods. Seventy-two freshly extracted bovine incisors were fractured at the coronal level by using a hammer applied with a standardized method, and the fragment was reattached by using three different methods: Er:YAG laser, orthophosphoric acid, and laser plus acid. The different groups were evaluated by a test realized with the dynamometer to know the force required to successfully detach the reattached fragment and by a microinfiltration test by using a 0.5% methylene blue solution followed by the optic microscope observation. Results. The compression test showed only a slight difference between the three groups, without any statistical significance. The infiltration test used to evaluate the marginal seal between the fracture fragment and the tooth demonstrated that etching with Er:YAG laser alone or in combination with orthophosphoric acid gives better results than orthophosphoric acid alone, with a highly significant statistical result. Discussion. Reattaching a tooth fragment represents a clinically proven methodology, in terms of achieving resistance to detachment, and the aim of this work was to demonstrate the advantages of Er:YAG laser on this procedure. Conclusion. This “in vitro” study confirms that Er:YAG laser can be employed in dental traumatology to restore frontal teeth after coronal fracture

    Near-field investigation of luminescent hyperuniform disordered materials

    Get PDF
    Disordered photonic nanostructures have attracted tremendous interest in the past three decades, not only due to the fascinating and complex physics of light transport in random media, but also for peculiar functionalities in a wealth of interesting applications. Recently, the interest in dielectric disordered systems has received new inputs by exploiting the role of long-range correlation within scatterer configurations. Hyperuniform photonic materials, that share features of photonic crystals and random systems, constitute the archetype of systems where light transport can be tailored from diffusive transport to a regime dominated by light localization due to the presence of photonic band gap. Here, advantage is taken of the combination of the hyperuniform disordered (HuD) design in slab photonics, the use of embedded quantum dots for feeding the HuD resonances, and near-field hyperspectral imaging with sub-wavelength resolution in the optical range to explore the transition from localization to diffusive transport. It is shown, theoretically and experimentally, that photonic HuD systems support resonances ranging from strongly localized modes to extended modes. It is demonstrated that Anderson-like modes with high Q/V are created, with small footprint, intrinsically reproducible and resilient to fabrication-induced disorder, paving the way for a novel photonic platform for quantum applications

    Experimental Quantum Hamiltonian Learning

    Get PDF
    Efficiently characterising quantum systems, verifying operations of quantum devices and validating underpinning physical models, are central challenges for the development of quantum technologies and for our continued understanding of foundational physics. Machine-learning enhanced by quantum simulators has been proposed as a route to improve the computational cost of performing these studies. Here we interface two different quantum systems through a classical channel - a silicon-photonics quantum simulator and an electron spin in a diamond nitrogen-vacancy centre - and use the former to learn the latter's Hamiltonian via Bayesian inference. We learn the salient Hamiltonian parameter with an uncertainty of approximately 10510^{-5}. Furthermore, an observed saturation in the learning algorithm suggests deficiencies in the underlying Hamiltonian model, which we exploit to further improve the model itself. We go on to implement an interactive version of the protocol and experimentally show its ability to characterise the operation of the quantum photonic device. This work demonstrates powerful new quantum-enhanced techniques for investigating foundational physical models and characterising quantum technologies

    PINK1 Defect Causes Mitochondrial Dysfunction, Proteasomal Deficit and α-Synuclein Aggregation in Cell Culture Models of Parkinson's Disease

    Get PDF
    Mutations in PTEN induced kinase 1 (PINK1), a mitochondrial Ser/Thr kinase, cause an autosomal recessive form of Parkinson's disease (PD), PARK6. Here, we report that PINK1 exists as a dimer in mitochondrial protein complexes that co-migrate with respiratory chain complexes in sucrose gradients. PARK6 related mutations do not affect this dimerization and its associated complexes. Using in vitro cell culture systems, we found that mutant PINK1 or PINK1 knock-down caused deficits in mitochondrial respiration and ATP synthesis. Furthermore, proteasome function is impaired with a loss of PINK1. Importantly, these deficits are accompanied by increased α-synclein aggregation. Our results indicate that it will be important to delineate the relationship between mitochondrial functional deficits, proteasome dysfunction and α-synclein aggregation
    corecore