16 research outputs found

    The Disulfide Relay of the Intermembrane Space Oxidizes the Ribosomal Subunit Mrp10 on Its Transit into the Mitochondrial Matrix

    Get PDF
    SummaryMost mitochondrial proteins are synthesized in the cytosol and directed into the organelle; matrix proteins contain presequences that guide them through translocases in contact sites of the outer and inner membrane. In contrast, the import of many intermembrane space proteins depends on cysteine residues and the oxidoreductase Mia40. Here, we show that both import machineries can cooperate in the biogenesis of matrix proteins. Mrp10, a conserved protein of the mitochondrial ribosome, interacts with Mia40 during passage into the matrix. Mrp10 contains an unconventional proline-rich matrix-targeting sequence that renders import intermediates accessible to Mia40. Although oxidation of Mrp10 is not essential for its function in mitochondrial translation, the disulfide bonds prevent proteolytic degradation of Mrp10 and thereby counteract instability of the mitochondrial genome. The unconventional import pathway of Mrp10 is presumably part of a quality-control circle that connects mitochondrial ribosome biogenesis to the functionality of the mitochondrial disulfide relay

    The mitochondrial oxidoreductase CHCHD4 is present in a semi-oxidized state in vivo.

    Get PDF
    Disulfide formation in the mitochondrial intermembrane space is an essential process catalyzed by a disulfide relay machinery. In mammalian cells, the key enzyme in this machinery is the oxidoreductase CHCHD4/Mia40. Here, we determined the in vivo CHCHD4 redox state, which is the major determinant of its cellular activity. We found that under basal conditions, endogenous CHCHD4 redox state in cultured cells and mouse tissues was predominantly oxidized, however, degrees of oxidation in different tissues varied from 70% to 90% oxidized. To test whether differences in the ratio between CHCHD4 and ALR might explain tissue-specific differences in the CHCHD4 redox state, we determined the molar ratio of both proteins in different mouse tissues. Surprisingly, ALR is superstoichiometric over CHCHD4 in most tissues. However, the levels of CHCHD4 and the ratio of ALR over CHCHD4 appear to correlate only weakly with the redox state, and although ALR is present in superstoichiometric amounts, it does not lead to fully oxidized CHCHD4

    Vectorial import via a metastable disulfide-linked complex allows for a quality control step and import by the mitochondrial disulfide relay

    Get PDF
    Disulfide formation in the mitochondrial intermembrane space (IMS) is an essential process. It is catalyzed by the disulfide relay machinery, which couples substrate import and oxidation. The machinery relies on the oxidoreductase and chaperone CHCHD4-Mia40. Here, we report on the driving force for IMS import and on a redox quality control mechanism. We demonstrate that unfolded reduced proteins, upon translocation into the IMS, initiate formation of a metastable disulfide-linked complex with CHCHD4. If this interaction does not result in productive oxidation, then substrates are released to the cytosol and degraded by the proteasome. Based on these data, we propose a redox quality control step at the level of the disulfide-linked intermediate that relies on the vectorial nature of IMS import. Our findings also provide the mechanistic framework to explain failures in import of numerous human disease mutants in CHCHD4 substrates

    METALIC reveals interorganelle lipid flux in live cells by enzymatic mass tagging

    No full text
    The distinct activities of organelles depend on the proper function of their membranes. Coordinated membrane biogenesis of different organelles necessitates lipid transport from their site of synthesis to their destination. Several factors have been proposed to participate in lipid distribution, but despite its basic importance, in vivo evidence linking the absence of putative transport pathways to specific transport defects remains scarce. A reason for this scarcity is the near absence of in vivo lipid trafficking assays. Here we introduce a versatile method named METALIC (Mass tagging-Enabled TrAcking of Lipids In Cells) to track interorganelle lipid flux inside cells. In this strategy, two enzymes, one directed to a ‘donor’ and the other to an ‘acceptor’ organelle, add two distinct mass tags to lipids. Mass-spectrometry-based detection of lipids bearing the two mass tags is then used to quantify exchange between the two organelles. By applying this approach, we show that the ERMES and Vps13–Mcp1 complexes have transport activity in vivo, and unravel their relative contributions to endoplasmic reticulum–mitochondria lipid exchange.ISSN:1465-7392ISSN:1476-467

    The Ca2+-Dependent Release of the Mia40-Induced MICU1-MICU2 Dimer from MCU Regulates Mitochondrial Ca2+ Uptake

    Get PDF
    The essential oxidoreductase Mia40/CHCHD4 mediates disulfide bond formation and protein folding in the mitochondrial intermembrane space. Here, we investigated the interactome of Mia40 thereby revealing linksbetween thiol-oxidation and apoptosis, energy metabolism, and Ca2+ signaling. Among the interaction partners of Mia40 is MICU1-the regulator of the mitochondrial Ca2+ uniporter (MCU), which transfers Ca2+ across the inner membrane. We examined the biogenesis of MICU1 and find that Mia40 introduces an intermolecular disulfide bond that links MICU1 and its inhibitory paralog MICU2 in a heterodimer. Absence of this disulfide bond results in increased receptor-induced mitochondrial Ca2+ uptake. In the presence of the disulfide bond, MICU1-MICU2 heterodimer binding to MCU is controlled by Ca2+ levels: the dimer associates with MCU at lowlevels of Ca2+ and dissociates upon high Ca2+ concentrations. Our findings support a model in which mitochondrial Ca2+ uptake is regulated by a Ca2+ dependent remodeling of the uniporter complex

    Proteasomal degradation induced by DPP9-mediated processing competes with mitochondrial protein import

    No full text
    Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N-terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N-terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N-terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9- mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments

    Proteasomal degradation induced by DPP9-mediated processing competes with mitochondrial protein import

    No full text
    Plasticity of the proteome is critical to adapt to varying conditions. Control of mitochondrial protein import contributes to this plasticity. Here, we identified a pathway that regulates mitochondrial protein import by regulated N-terminal processing. We demonstrate that dipeptidyl peptidases 8/9 (DPP8/9) mediate the N-terminal processing of adenylate kinase 2 (AK2) en route to mitochondria. We show that AK2 is a substrate of the mitochondrial disulfide relay, thus lacking an N-terminal mitochondrial targeting sequence and undergoing comparatively slow import. DPP9-mediated processing of AK2 induces its rapid proteasomal degradation and prevents cytosolic accumulation of enzymatically active AK2. Besides AK2, we identify more than 100 mitochondrial proteins with putative DPP8/9 recognition sites and demonstrate that DPP8/9 influence the cellular levels of a number of these proteins. Collectively, we provide in this study a conceptual framework on how regulated cytosolic processing controls levels of mitochondrial proteins as well as their dual localization to mitochondria and other compartments

    AIFM1 is a component of the mitochondrial disulfide relay that drives complex I assembly through efficient import of NDUFS5

    No full text
    The mitochondrial intermembrane space protein AIFM1 has been reported to mediate the import of MIA40/CHCHD4, which forms the import receptor in the mitochondrial disulfide relay. Here, we demonstrate that AIFM1 and MIA40/CHCHD4 cooperate beyond this MIA40/CHCHD4 import. We show that AIFM1 and MIA40/CHCHD4 form a stable long-lived complex in vitro, in different cell lines, and in tissues. In HEK293 cells lacking AIFM1, levels of MIA40 are unchanged, but the protein is present in the monomeric form. Monomeric MIA40 neither efficiently interacts with nor mediates the import of specific substrates. The import defect is especially severe for NDUFS5, a subunit of complex I of the respiratory chain. As a consequence, NDUFS5 accumulates in the cytosol and undergoes rapid proteasomal degradation. Lack of mitochondrial NDUFS5 in turn results in stalling of complex I assembly. Collectively, we demonstrate that AIFM1 serves two overlapping functions: importing MIA40/CHCHD4 and constituting an integral part of the disulfide relay that ensures efficient interaction of MIA40/CHCHD4 with specific substrates
    corecore