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SUMMARY

The essential oxidoreductase Mia40/CHCHD4 medi-
ates disulfide bond formation and protein folding
in the mitochondrial intermembrane space. Here,
we investigated the interactome of Mia40 thereby
revealing linksbetween thiol-oxidationandapoptosis,
energy metabolism, and Ca2+ signaling. Among the
interaction partners of Mia40 is MICU1—the regulator
of the mitochondrial Ca2+ uniporter (MCU), which
transfers Ca2+ across the inner membrane. We exam-
ined the biogenesis of MICU1 and find that Mia40 in-
troduces an intermolecular disulfide bond that links
MICU1 and its inhibitory paralog MICU2 in a hetero-
dimer. Absence of this disulfide bond results in
increased receptor-induced mitochondrial Ca2+ up-
take. In the presence of the disulfide bond, MICU1-
MICU2 heterodimer binding to MCU is controlled
by Ca2+ levels: the dimer associates with MCU at
low levelsofCa2+anddissociatesuponhighCa2+con-
centrations. Our findings support a model in which
mitochondrial Ca2+ uptake is regulated by a Ca2+-
dependent remodeling of the uniporter complex.

INTRODUCTION

Themitochondrial intermembrane space (IMS) harbors a diverse

set of proteins that fulfill important tasks (e.g., in mitochondrial

protein import, detoxification of reactive oxygen species, and

transport of metabolites). Moreover, the IMS takes a critical po-

sition in cellular signaling by relaying hydrogen peroxide signals,

integrating cellular clues to initiate apoptosis, and supporting

Ca2+ signaling (Herrmann and Riemer, 2010; Vögtle et al., 2012).

Import and folding of IMS proteins is mainly mediated by two

pathways: some IMS proteins contain bipartite N-terminal tar-

geting sequences (MTS) and employ the import machinery of

the inner membrane (IM); however, import of most IMS proteins

depends on their oxidative folding in the IMS (Chacinska et al.,
Cell
2009; Herrmann and Riemer, 2010). Oxidation is performed by

the oxidoreductase Mia40 (also CHCHD4), which contains a

redox-active CPC motif (cysteine [C]; proline [P]; Figure 1A)

(Banci et al., 2009; Kawano et al., 2009). The oxidized CPCmotif

can interact with precursor proteins that enter the IMS, leading to

the formation of a mixed disulfide bond between conserved cys-

teines in the substrate and the CPC motif of Mia40 (Banci et al.,

2009; Kawano et al., 2009; Milenkovic et al., 2009; Sideris et al.,

2009). The precursor is eventually released in the oxidized form

from Mia40, which is left behind in its reduced state (Bien

et al., 2010; Terziyska et al., 2009). For another round of sub-

strate oxidation, Mia40 is reoxidized by the sulfhydryl oxidase

Erv1 (human homolog: augmenter of liver regeneration [ALR])

(Banci et al., 2011; Bien et al., 2010; Lionaki et al., 2010).

Oxidation by Mia40 is possible despite the highly reducing envi-

ronment of the IMS (with respect to the redox potential of the

glutathione redox couple (Fischer et al., 2013; Kojer et al.,

2012), because of low amounts of glutaredoxins in the IMSwhich

protect protein thiols from reduction by glutathione.

Most so-far-known Mia40 substrates are small proteins

(<15 kDa) that contain two a helices in each of which two cyste-

ines are spaced by either three or nine residues (twin CX3C and

twin CX9C proteins, respectively) (Gabriel et al., 2007; Herrmann

and Riemer, 2010; Longen et al., 2009). Recently, in yeast, Mia40

substrates with different structures have been identified—the

proteins copper chaperone for superoxide dismutase 1 (Ccs1)

(Gross et al., 2011; Klöppel et al., 2011), Atp23 (Weckbecker

et al., 2012), and Tim22 (Wrobel et al., 2013). For human

Mia40, we know hardly any substrates, and we thus determined

the interactome of human Mia40 and identified a set of Mia40

interaction partners, including the protein MICU1.

MICU1 is critical for mitochondrial Ca2+ signaling (Hajnóczky

et al., 2003; Perocchi et al., 2010; Rizzuto et al., 2012). It is local-

ized to the IM and forms a complex with the pore-forming mito-

chondrial Ca2+ uniporter (MCU) (Baughman et al., 2011; Chaud-

huri et al., 2013; De Stefani et al., 2011), the MCU paralog MCUb

(Raffaello et al., 2013), the regulatory subunit, MICU2 (Plovanich

et al., 2013), and the essential MCU regulator (EMRE) (Sancak

et al., 2013). MICU1 regulatesMCU thereby facilitating a cooper-

ative behavior during Ca2+ influx (Csordás et al., 2013; Kamer

and Mootha, 2014). It maintains MCU closed at low Ca2+ levels
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Figure 1. The Interactome of the Mitochon-

drial OxidoreductaseMia40 ContainsMICU1

(A) Mia40 can interact with and oxidize proteins in

the mitochondrial IMS. Therefore, Mia40 relies on

its redox-active cysteine motif (C53 and C55),

which forms as part of the catalytic cycle a mixed-

disulfide intermediate with the substrates.

(B) Pilot experiment to detect disulfide-linked

Mia40-Strep interaction partners. Cells expressing

either Mia40WT-Strep, Mia40C4,53,55S-Strep, or the

empty vector (Mock) were pulse labeled for 4 hr,

incubated with N-ethylmaleimide (NEM) to stabilize

mixed disulfides, lysed under denaturing condi-

tions, and incubated with strep-tactin beads.

Bound proteins were eluted and analyzed by

reducing and non-reducing SDS-PAGE. Black ar-

row heads: Substrate-Mia40 complexes. White

arrow heads: Substrates that migrate alone after

reduction of mixed disulfides between Mia40 and

substrates.

(C) Interaction partners of Mia40WT-Strep from

denaturing affinity purification (AP). In this experi-

ment only proteins interacting with Mia40 via a

mixed disulfide bond are identified. Mia40WT-

Strep- and Mia40C4,53,55S-Strep-expressing cells

were grown in SILAC medium. Cells were treated

with NEM, mixed and lysed under denaturing

conditions. Mia40-Strep was enriched using strep-

tactin beads and eluates were analyzed by mass

spectrometry. The experiment was reproduced

with inverted isotope labeling. Results from both

experiments are plotted against each other. Proteins were counted as hits if at least two peptides per protein were enriched more than 2.8 fold.

(D) Interaction partners of Mia40WT-Strep from native AP. In this experiment, one can identify both proteins interacting with Mia40 via a mixed disulfide bond and

proteins that are non-covalently bound to Mia40. As (C) except that cells expressing Mia40WT-Strep and cells harboring an empty vector (Mock) were assessed

after native cell lysis.
and mediates opening of MCU at high Ca2+ concentrations to

allow rapid Ca2+ transport across the IM. This induction of coop-

erative behavior of MCU by MICU1 requires two Ca2+-binding

EF-hands in MICU1 (Csordás et al., 2013; Kamer and Mootha,

2014). The role of MICU2 is less well defined: it can form hetero-

dimers with MICU1 and modulates MCU activity likely in an

inhibitory manner (Kamer and Mootha, 2014; Patron et al.,

2014; Plovanich et al., 2013). The modulation thereby depends

on the presence of MICU1 (Kamer and Mootha, 2014; Patron

et al., 2014).

In this study we identify MICU1 as interaction partner of Mia40

and demonstrate that Mia40 mediates dimerization of MICU1

with MICU2. We show that at resting Ca2+ levels the MICU1-

MICU2 heterodimer interacts with MCU. This interaction is lost

at Ca2+ concentrations that stimulatemitochondrial Ca2+ uptake.

Amutation of the disulfide-forming cysteine 463 inMICU1 results

in the loss of the inhibitory component MICU2 from the complex

which in turn leads to increased Ca2+ uptake. Based on our data,

we propose that the Ca2+-dependent association of the disul-

fide-linked MICU1 and MICU2 heterodimer with MCU enables

the fine-tuned regulation of mitochondrial Ca2+ influx.

RESULTS

The Interactome of the Oxidoreductase Mia40
To identify the interactome of human Mia40, we combined

precipitation of Mia40-substrate complexes with quantitative
722 Cell Metabolism 22, 721–733, October 6, 2015 ª2015 Elsevier In
mass spectrometry. We constructed three stable inducible

HEK293 cell lines to achieve the homogenous expression of

C-terminally Strep-tagged Mia40 variants: one expressing

wild-type Mia40 (Mia40WT-Strep), one expressing a redox-inac-

tive mutant of Mia40 (Mia40C4,53,55S-Strep), and one that

harbored an empty vector (Mock) (Figure S1A). We enriched

Mia40-substrate complexes in a proof-of-concept experi-

ment (Figure 1B). Precipitation of Mia40WT-Strep but not

Mia40C4,53,55S-Strep or the Mock control yielded a number of

bands that under non-reducing conditions migrated slower

compared with Mia40-Strep alone (Figure 1B, black arrow

heads). These bands disappeared when the samples were

treated with a reductant. Instead, new bands appeared, all of

them migrating faster than the bands observed in the non-

reducing gel (Figure 1B, white arrow heads), indicating that the

respective proteins had previously been connected to Mia40

by mixed disulfide bonds.

We next determined the identity of the interaction partners by

quantitative mass spectrometry. Enriching Mia40-substrate

complexes by denaturing immunoprecipitation (IP) led to the

identification of eleven proteins (Figure 1C; Tables S1, S2, and

S3). One of the hits was as expected ALR. We also identified

the twin CX3/9C proteins Tim13 and CHCHD2/9, which are

known interaction partners of Mia40 (Fischer et al., 2013). More-

over, we found eight novel Mia40 interaction partners: C1orf163,

CCDC58, CCDC127, MAP7D3, Med29, NDUFB10, SSNA1, and

MICU1.
c.



Since Mia40 also contributes to import and folding of its

substrates by non-covalent binding of hydrophobic residues in

the substrate (Koch and Schmid, 2014; Weckbecker et al.,

2012), we expanded our approach to Mia40 interaction partners

that rely on the chaperone activity of Mia40. To this end, we

comparedMia40WT-Strep-containing samples to aMock control

after native cell lysis. With this approach, we found eighteen

Mia40 interaction partners (Figure 1D; Tables S1 and S2). Among

these enriched proteins were as expected all proteins that we

identified in the denaturing precipitation. SSNA1 was only found

enriched in one of the two biological replicates. In total, we iden-

tified additional eight interaction partners: ACTG2, adenylate ki-

nase 2(AK2), AKAP12, apoptosis-inducing factor (AIF), HCLS1-

associated protein X-1 (Hax1), phosphoglycerate mutase family

member 5 (PGAM5), Tim8, and Tim10.

Taken together, we identified numerous targets of Mia40

including several uncharacterized open reading frames and pro-

teins that potentially link the redox function of Mia40 to diverse

IMS processes. Given the physiological importance of the inter-

play between redox and Ca2+ signaling and the nature of MICU1

as an unconventional Mia40 substrate, we focused on MICU1 to

better understand how redox processes regulate mitochondrial

Ca2+ homeostasis.

MICU1 Interacts with Cysteine 55 of Mia40 after Its
Membrane-potential-dependent Import into the IMS
To confirm the interaction of MICU1 and Mia40, we utilized

stable inducible cell lines expressing different Strep-tagged

Mia40 variants (Figure S1A). We performed precipitations

against the Strep tag after denaturing cell lysis. MICU1 did only

coprecipitate with Mia40WT-Strep and Mia40C53S-Strep (Fig-

ure 2A), indicating that MICU1 interacts via a disulfide bond

with cysteine 55 of Mia40. In contrast, the control protein LDH

did not coprecipitate with Mia40.

We next performed the inverse experiment. To this end, we

generated a stable inducible cell line that expressed MICU1

with a C-terminal HA epitope tag (MICU1-HA) (Figure S1B).

Upon denaturing IP against the HA tag, we specifically copreci-

pitated endogenous Mia40 with MICU1-HA (Figure 2B). In a third

approach, we then tested whether the endogenous proteins also

interact with each other. Indeed, when endogenous MICU1 was

immunoprecipitated, Mia40 was copurified (Figure 2C). Taken

together, we confirmed MICU1 as interaction partner of Mia40.

Unlike most other Mia40 interaction partners, which rely on

Mia40 for mitochondrial import, MICU1 contains a predicted

MTS of 33 amino acid residues (Figure 2D). To investigate the

import of endogenous MICU1 and the processing of its MTS,

we performed pulse-chase assays and analyzed precipitated

MICU1 on reducing SDS-PAGE (Figure 2D). Endogenous

MICU1migrated as a double band at around 55 kDa directly after

pulse labeling. The slower migrating band likely represented the

MICU1 precursor, as it was also observed when MICU1 import

was prevented by depleting themitochondrial membrane poten-

tial. During the chase time, MICU1 became further processed

to a third band that migrated at around 45 kDa. The overall pro-

cessing proceeded very slowly compared to the processing of

the IMS protein Smac that, like MICU1, contains an MTS but be-

comes processed almost completely already during the pulse

time (Figure S2A).
Cell
When during its membrane-potential-dependent import does

MICU1 interact withMia40? To answer this question we followed

the disulfide-linked MICU1-Mia40 complex over time by pulse-

chase analyses (Figure 2E). To this end, we first precipitated

Mia40 from cells expressingMICU1-HA and then re-precipitated

in a second step the HA-tagged MICU1, which was disulfide-

linked toMia40. Mia40 andMICU1 interacted strongest between

20 and 60 min of chase time (Figure 2E), suggesting a post-

import interaction of both proteins.

As a consequence of the membrane-potential-dependent

MICU1 import, the interaction between Mia40 and MICU1

should also become membrane potential dependent. Indeed,

the mixed disulfide between MICU1 and Mia40 could only be

observed in the presence of the mitochondrial membrane po-

tential (Figures 2F and 2G). Conversely, the interaction between

Mia40 and twin CXnC substrate proteins was unaffected by

the membrane potential (Figures 2F and 2G). Taken together,

we find that MICU1 becomes imported in a membrane-poten-

tial-dependent and Mia40-independent manner (Figure S3).

This membrane potential dependency also allowed to generally

distinguish between co- and post-import interactions and

suggested that MICU1 is not the only substrate that undergoes

a post-import interaction with Mia40 (Figure S3A). After

import, MICU1 forms a disulfide-linked complex with Mia40

(Figure 2H).

The Second Processing Step of MICU1 Takes Place
Concomitantly to MICU1-MICU2 Dimerization by Mia40
The interaction between Mia40 andMICU1 is consistent with the

recent report that MICU1 forms a disulfide-linked heterodimer

with MICU2 (Patron et al., 2014). To address the role of Mia40

for the disulfide bond formation, we first explored the oxidation

kinetics of MICU1 and MICU2 (Figure 3A; for processing of

MICU2, see Figures S2B and S2C). We thereby found that

both endogenous MICU1 and MICU2 mature within 30–90 min

into complexes with apparent masses of approximately

96 kDa. Upon reduction, these complexes disappeared, indi-

cating that they were linked by disulfide bonds. The 96 kDa com-

plexes appeared to undergo dynamic changes that we attribute

to processing of mainly MICU1 but also MICU2 (compare with

processing kinetics in Figures 2D and S2A). In the absence of

the membrane potential, this disulfide-linked dimer was not

formed (Figure 3B), in line with the absence of Mia40-MICU1

complexes under these conditions (Figure 2F). Further analyses

of MICU1 and MICU2 oligomerization revealed that upon MICU1

depletion, MICU2 failed to form heterodimers but was still

processed to its mature form (Figure 3C). Conversely, MICU1

formed slower migrating homodimers upon MICU2 depletion

(Figures 3D, S3H, and S3I) (Patron et al., 2014). This homodime-

rization proceeded slower than the heterodimerization between

MICU1 and MICU2. Like for MICU2, all processing steps of

MICU1 still occurred, indicating that heterodimerization is not

required for processing, even though dimerization precedes

the second processing step of MICU1 in the control situation

(Figure S2D). When we correlated the dimerization kinetics of

MICU1 with the kinetics of the Mia40-MICU1 interaction, we

found that—as expected for an oxidoreductase and its sub-

strate—the Mia40-MICU1 interaction preceded disulfide-

dependent MICU1 dimerization (Figure 3E).
Metabolism 22, 721–733, October 6, 2015 ª2015 Elsevier Inc. 723
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Figure 2. Interaction between MICU1 and

Mia40 Takes Place after IMS Import of

MICU1

(A) AP of Mia40-Strep variants and test for MICU1

interaction. Cells expressing different Mia40-Strep

variants were treated with NEM and lysed under

denaturing conditions, and Mia40-Strep variants

were precipitated using strep-tactin beads.

Immunoblot analyses were performed against

MICU1, Strep, and as control LDH.

(B) Denaturing IP of MICU1-HA to test for inter-

action with Mia40. As (A) except that MICU1-HA

was immunoprecipitated from cells expressing

MICU1-HA or an empty vector (Mock). Immuno-

blot analyses were performed against HA, Mia40,

and as control LDH.

(C) Test for interaction of endogenous Mia40 and

endogenous MICU1. As (A) except that denaturing

IP was performed against MICU1 in HEK293 cells.

Eluates were analyzed by immunoblot against

Mia40, MICU1, and LDH on reducing SDS-PAGE.

(D) Maturation of endogenous MICU1 is compar-

atively slow and involves multiple processing

steps. Top: Domain layout of MICU1. It contains a

predicted mitochondrial presequence (predicted

by MitoProt2, TargetP) and two EF hands. Middle:

Pulse-chase experiment (10 min pulse, indicated

chase times) and subsequent IP against MICU1.

Eluates were analyzed by reducing SDS-PAGE

and autoradiography. As control the mitochondrial

membrane potential was depleted by incubation

with CCCP and valinomycin during the pulse and

chase periods (�DJ). Pre: precursor; Pro, Pro1,

and Pro2: processed forms. Bottom: Quantifica-

tions. The intensities of the precursor and pro-

cessed forms were analyzed with ImageJ. Error

bars represent SD.

(E) The interaction of Mia40 with MICU1WT-HA is

delayed compared to its interactionwith twin CXnC

substrates. Cells were pulse labeled for 10 min

with [35S]-methionine and chased with cold

methionine for the indicated times. Cells were

treated with NEM and lysed, and lysates analyzed

by IP against Mia40. After the first IP against

endogenous Mia40 (lower blot), the resulting

eluate was analyzed by a second IP (ReIP) against

HA (upper blot). Eluates were analyzed by non-

reducing SDS-PAGE and autoradiography.

(F) The Mia40-MICU1WT-HA interaction depends on the mitochondrial membrane potential. Experiment was performed as described in (E).To deplete the

mitochondrial membrane potential, cells were incubated with CCCP and valinomycin during the pulse and chase periods (�DJ). Cells were analyzed by IP

against Mia40. Eluates were analyzed by non-reducing SDS-PAGE and autoradiography. The intensities of the Mia40-MICU1WT-HA complex and Mia40-twin

CXnC protein complexes at different times were analyzed with ImageJ.

(G) Kinetics of Mia40-substrate interactions for co- and post-import interactions differ strongly. Quantification of (F). Error bars represent SD.

(H) Model for the membrane-potential-dependent interaction of Mia40 and MICU1.
In order to facilitate dimer formation, Mia40 has to interact with

one of the cysteines of MICU1. MICU1 contains seven cysteine

residues of which only cysteine 463 is conserved (Figure 3F).

This cysteine has been reported to be involved in disulfide

bond formation with MICU2 (Patron et al., 2014) and would

thus also be expected to interact with Mia40. To test this, we

generated MICU1 variants that each lack one of the seven cys-

teines (confirmation of mitochondrial localization; Figure S1B).

When we analyzed these proteins on non-reducing SDS-

PAGE, we could confirm that all MICU1 mutants formed the di-
724 Cell Metabolism 22, 721–733, October 6, 2015 ª2015 Elsevier In
sulfide-linked MICU1 dimer except for MICU1C463A-HA (Figures

3G, S3J, and S3K). This was not due to a mislocalization of this

variant (Figures S1B and S2E). We next tested the interaction

betweenMICU1C463A-HA andMia40 and showed that Mia40 co-

precipitates with MICU1WT-HA but not with MICU1C463A-HA

(Figure 3H).

Interestingly, in our experiments we only found MICU1 but

not MICU2 to interact with Mia40 (Figure 3I), even though

MICU1 and MICU2 share high structural and sequence similar-

ity. Analysis of the amino acid sequence around cysteine 463 in
c.



MICU1 revealed that cysteine 463 is present in an a helix and is

flanked by hydrophobic residues that line the same face of the

helix (Figure 3J). This motif is also found in the so-called IMS-

targeting signal, which has been described to serve as recog-

nition sequence of twin CXnC-type Mia40 substrates (Koch

and Schmid, 2014; Milenkovic et al., 2009; Sideris et al.,

2009). MICU2 does not contain such a signal (Figure 3J), which

explains why Mia40 specifically interacts with MICU1 but not

MICU2.

Taken together, we find that MICU1 andMICU2maturation in-

cludes an initial processing of MICU1 and MICU2 after mem-

brane-potential-mediated mitochondrial import. Then, Mia40

forms a disulfide bond specifically with MICU1 but not MICU2,

likely by recognizing a hydrophobic motif around cysteine 463.

This interaction primes MICU1 for heterodimerization with

MICU2. During or after dimerization MICU1 is processed a sec-

ond time (Figure 3K).

Disulfide Bond Formation between MICU1 and MICU2
Takes Place on MCU
We next tested whether disulfide-dependent dimerization was

critical for MCU-MICU1 complex formation. To this end, we

constructed cell lines that stably coexpress MCU-FLAG and

MICU1-HA variants (Figure S1C). Using these cell lines, we per-

formed native IP experiments (using n-Dodecyl b-D-maltoside

as mild solubilizing detergent) in which we precipitated either

MICU1-HA or MCU-FLAG, respectively (Figures 4A and 4B).

We thereby observed that MICU1WT-HA and MICU1C463A-HA

both interacted with MCU-FLAG (Figure 4A). In line with this

physical interaction of MCU with both MICU1 variants, we

also observed a stabilization of especially MICU1C463A-HA

upon coexpression of MCU-FLAG (Figure 4C). The half-life of

MICU1C463A-HA was extended from 1 hr to 2.5 hr (Figures

4C). Also, the half-life of MICU1WT appeared to increase upon

coexpression of MCU, although only to a minor extent. This in-

dicates that the stoichiometry of MCU and MICU1 influences

the stability of MICU1. Conversely, MCU has a longer half-life

compared to MICU1 (Figure S4). The shorter half-life of

MICU1C463A-HA compared to MICU1WT-HA indicates that the

disulfide bond in the MICU dimer is structural, which is also

supported by its high stability toward the reductant DTT

(Figure S3L).

Because MICU1C463A-HA also interacts with MCU-FLAG, it

can be concluded that disulfide bond formation is not essential

for the interaction between MICU1 and MCU. We therefore

next analyzed whether MICU1WT-HA also interacts with MCU-

FLAG as monomer prior to its dimerization. To this end, we

performed a pulse-chase experiment and isolated MCU-FLAG

after different chase times by native IP. A subsequent denaturing

re-IP against MICU1-HA showed that both MICU1WT and

MICU1C463A-HA interacted immediately after the pulse period

with MCU-FLAG (Figure 4D) and became fully processed while

being associated with MCU-FLAG. Taken together, our model

for the assembly of the uniplex includes membrane-potential-

dependent import of MICU1, MICU2, and MCU (Figures 2D,

S2B, and S4A) followed by interaction of the MICU1 monomer

with MCU (Figure 4D). Then, Mia40 primes MICU1 for heterodi-

merization with MICU2, which subsequently takes place on

MCU (Figure 4E).
Cell
Preventing Disulfide-Dependent Heterodimerization
between MICU1 and MICU2 Influences MCU Activity
MICU1 dimers and monomers are both parts of the mitochon-

drial uniplex (Figure 4), and we wondered how this influences

mitochondrial Ca2+ uptake (for establishment of our Ca2+ mea-

surements and comparison with previously published results,

see Figure S5). We first examined the role of MICU1 cysteine

463 on mitochondrial Ca2+ uptake. To this end, we utilized

mitochondrial targeted D3cpv and TN-XL as sensors to cover a

wide range of matrix Ca2+ concentrations and transfected them

in cells coexpressing MCU-FLAG with either MICU1WT-HA

or MICU1C463A-HA (Figures 5A and 5B). Coexpression of

MICU1C463A with MCU caused no significant changes in the

basal [Ca2+]mito when compared to MICU1WT+MCU. However,

ATP-induced Ca2+ uptake inMICU1 C463A+MCU cells was signif-

icantly increased and prolonged compared to MICU1WT+MCU

cells (Figures 5A and 5B).

MICU1 exists in a heterodimer with MICU2, and it has been

proposed that MICU2 exhibits an inhibitory influence on Ca2+

uptake (Patron et al., 2014). We could confirm this finding

(Figure S5I) and also found that when coexpressing MICU2

with MCU and MICU1C463A, Ca2+ uptake was still significantly

elevated 50 s after ATP addition compared to cells expressing

MICU1WT+MCU+MICU2 (Figure 5C). Mitochondrial Ca2+ uptake

is controlled by Ca2+ levels in the IMS that equal cytosolic

Ca2+ concentrations. Hence, we also tested if MICU1C463A

affected cytosolic Ca2+ dynamics. Our results indicate no

overt differences between MCU, MICU2, and either MICU1WT

or MICU1C463A expression (Figures S5J and S5K).

In summary, these findings strongly support a critical role of

MICU1 cysteine 463 and the disulfide-linked heterodimer for

the regulation of mitochondrial Ca2+ uniplex activity. It was pre-

viously shown thatMICU1 linksMICU2 to the uniplex (Kamer and

Mootha, 2014). It is therefore tempting to speculate that in the

absence of the disulfide bond, MICU2 is hampered in exerting

its function on the uniplex, while MICU1C463A might still fulfill

the role of MICU1 in the uniplex.

Ca2+ Levels Determine the Amounts of
MICU1-MICU2-Dimer in Complex with MCU
How can the regulation of MCU by the MICU heterodimer be

explained on a molecular level? On the one hand, the disulfide

bond might be reduced in the presence of Ca2+. Due to the

high stability of the disulfide (Figure S3L), this option appears

unlikely, and we could show that heterodimerization is unaf-

fected in the presence of different amounts of Ca2+ (Figure S3M).

Alternatively, different Ca2+ levels might lead to structural

changes in MICU1 and MICU2 and thus affect the binding of

the heterodimer to MCU. To test this hypothesis, we analyzed

the amounts of MICU1-MICU2 that were bound to MCU in

dependence of Ca2+ (Figure 6A). We performed native IP against

either MCU-FLAG or MICU1-HA in the presence or absence of

Ca2+ and analyzed the levels of coprecipitated MICU1 or MCU,

respectively (Figures 6B and 6C). Interestingly, MICU1-HA and

MCU-FLAG interacted only in the absence but not in the pres-

ence of Ca2+ (Figures 6B and 6C). The Ca2+-dependent dissoci-

ation of the MICU1-MCU complex did not depend on MICU2

since also monomeric MICU1C463A-HA was not in a complex

with MCU when the cells were lysed in the presence of Ca2+
Metabolism 22, 721–733, October 6, 2015 ª2015 Elsevier Inc. 725
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(Figure 6D). Next, we repeated the native IP against MCU-FLAG

using a cell line that only expresses MCU-FLAG. In this cell line,

the endogenous stoichiometry of MICU1 and MICU2 is pre-

served. Consistently, the amounts of endogenous MICU1-

MICU2 dimer that coprecipitated with MCU-FLAG decreased

at high Ca2+ concentrations (Figure 6E). MICU1 coprecipitated

mainly in its monomeric form (likely representing an assembly in-

termediate), while MICU2 did not coprecipitate at all (Figure 6E).

To put these findings into a physiological context, we next

correlated the Ca2+ concentrations that activate MCU-depen-

dent Ca2+ uptake with those that lead to a release of the

MICU-dimer fromMCU (Figures 6F and 6G). To this end, we first

semi-permeabilized cells expressing MCU, MICU2, and MICU1

and measured Ca2+ uptake induced by increasing external

Ca2+ levels. At concentrations between 1 and 3 mM, the rate of

mitochondrial Ca2+ uptake was highest (Figure 6F), which is in

line with previously published results (Csordás et al., 2013). If

MCU activation would require the dissociation of the MICU

dimer, a concentration in the very low mM range should be suffi-

cient to release MICU1 from MCU. To test this, we repeated the

experiment shown in Figure 6B with different Ca2+ concentra-

tions. Indeed, at 0.7 to 2 mM Ca2+, the MICU1WT-HA dimer

showed reduced binding to MCU-FLAG (Figure 6G, upper

blot). This dynamic behavior was dependent on the sensing of

Ca2+ by the EF hands in MICU1 because a MICU1 mutant that

lacked the Ca2+ binding motifs (DEF) did not respond to elevated

Ca2+ levels (Figure 6G, lower blot). We confirmed this behavior

also for endogenous MICU1 and MICU2 (Figure 6H). Note-

worthy, Ca2+ had to be applied during cell lysis and not to the

already lysed cells to observe this effect. Isolating the complex

without Ca2+ and incubating it subsequently with Ca2+ did not
Figure 3. Maturation of MICU1 Involves Multiple Processing Steps, Int

merization with MICU2

(A)MICU1 andMICU2 form heterodimers. Cells were pulse labeled for 10minwith

were treated with NEM and lysed, and lysates were analyzed by IP against MICU

and autoradiography. +DTT: The 900 chase sample was obtained twice and onc

(B) Disulfide-dependent dimerization of MICU1 depends on the mitochondrial

that the membrane potential was depleted in two samples (�DJ). Eluates of t

autoradiography.

(C) MICU1 depletion prevents dimerization of MICU2 but not MICU2 processing.

against MICU1. Then, dimerization kinetics of MICU2 was analyzed as described

(D) MICU2 depletion leads to the formation of MICU1 homodimers and does not p

with control siRNA (siCtrl) or siRNA directed against MICU2. Then, dimerization k

MICU1.

(E) Mia40-MICU1 interaction precedes MICU1-MICU2 dimer formation. The MIC

quantification of the Mia40-MICU1WT-HA interaction from Figure 2G was include

(F) Domain layout of human MICU1. MICU1 contains a mitochondrial targeting s

conserved.

(G) Mutational analysis of humanMICU1 cysteines reveals cysteine 463 to be invo

HA were lysed after NEM treatment and analyzed by non-reducing SDS-PAGE a

(H) Mia40 andMICU1 interact via cysteine 463 in MICU1. Cells expressing MICU1

lysed under denaturing conditions. IP against the HA tag was performed, and t

control LDH.

(I) MICU2 does not interact withMia40. Experimentwas performed as described in

control VDAC1.

(J) MICU1 but not MICU2 contains a potential Mia40 interaction site. C463 of MIC

targeting sequence that is crucial for the interaction with Mia40. The structure of

C413 of MICU2 is not surrounded by hydrophobic residues. This likely prevents

(K) Model for MICU1 maturation. MICU1 is processed directly after translocatio

dimerization with MICU2. After or during dimerization, a second processing step t

processing step.

Cell
result in a release of theMICU1dimer fromMCU-Flag (Figure S6).

Taken together, our data support that the composition of the

mitochondrial uniplex changes with differences in the local

Ca2+ levels. At high concentrations of Ca2+ in the IMS, the

MICU1-MICU2 dimer is released from the uniplex, while at

resting conditions the dimer binds to MCU. Based on our Ca2+

measurements, we propose that these composition changes

regulate uniplex activity (Figure 6I).

DISCUSSION

The Interactome of Mia40 Links Redox Homeostasis to a
Variety of Mitochondrial Pathways
Here we identified interaction partners of Mia40 in human cells

and thereby linked mitochondrial disulfide bond formation to

a variety of mitochondrial functions, including Ca2+ signaling,

apoptosis, and energy metabolism.

Many Mia40 interaction partners had already previously been

localized to the IMS (Tables S1 and S2). All of them, except AIF,

MICU1, and PGAM5, lack presequence-like MTS and are pre-

sumably imported into the IMS by the Mia40 pathway. AIF has

also been shown to support import of Mia40 (Hangen et al.,

2015). Consistently, most identified Mia40 interaction partners

also contain conserved cysteines, and some even contain

typical Mia40 recognition sites (Table S2). While most so-far-

investigated Mia40 substrates are small proteins with a simple

helix-loop-helix structure, some of the Mia40 interaction part-

ners contain multiple conserved cysteines and multidomain

structures (e.g., C1orf163 with 13 cysteines or MAP7D3 with a

mass of ca 90 kDa and 5 cysteines). Thus, these proteins might

in the future allow the detailed biophysical analyses of folding
eraction with Mia40 and Subsequent Disulfide-Dependent Heterodi-

[35S]-methionine and chasedwith coldmethionine for the indicated times. Cells

1 or MICU2, respectively. Eluates were analyzed by non-reducing SDS-PAGE

e treated with dithiothreitol (DTT) to reduce disulfide bonds.

membrane potential. Experiment was performed as described in (A) except

he IP against MICU1WT-HA were analyzed by non-reducing SDS-PAGE and

HeLa cells were treated for 72 hr with control siRNA (siCtrl) or siRNA directed

in (A). IP was performed against MICU2.

revent the second processing step in MICU1. HeLa cells were treated for 48 hr

inetics of MICU1 was analyzed as described in (A). IP was performed against

U1 dimer formation in (A) was quantified with ImageJ. As a comparison, the

d. Error bars represent SD.

equence (MTS), two EF hands, and seven cysteines, of which cysteine 463 is

lved in MICU dimerization. Cells expressing single cysteine mutants of MICU1-

nd immunoblot against the HA tag.
WT-HA, MICU1C463A-HA, or an empty vector (Mock) were treated with NEM and

he eluates were analyzed by immunoblot against the HA tag, Mia40, and as

Figure 2A. Immunoblot analyseswere performed againstMICU2, Strep, and as

U1 (PDB: 4NSC) is surrounded by hydrophobic amino acids forming an IMS-

MICU2 was modeled based on the structure of MICU1 using SWISS-MODEL.

the interaction with Mia40.

n into mitochondria. Then, Mia40 interacts with MICU1 to prime it for hetero-

akes place in MICU1. Notably, dimerization is not a prerequisite for this second
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Figure 4. Disulfide Bond-Dependent Dimerization of MICU1 and MICU2 Takes Place on MCU

(A) MCU coprecipitates with both MICU1WT and MICU1C463A. Cells harboring an empty vector and cells expressing MCU-FLAG and in addition either an empty

vector (Mock), MICU1WT-HA, or MICU1C463A-HA were lysed under mild native conditions. IP was performed against HA. Eluates were analyzed by immuno-

blotting against FLAG, HA, and VDAC1.

(B) Monomeric and dimeric MICU1WT and MICU1C463A coprecipitate with MCU. Cells harboring an empty vector and cells expressing MCU-FLAG and, in

addition, either an empty vector (Mock), MICU1WT-HA, orMICU1C463A-HAwere lysed undermild native conditions. IP was performed against FLAG. Eluates were

analyzed by immunoblotting against FLAG, HA, and VDAC1.

(C)MICU1C463A-HA is stabilized by coexpression ofMCU-FLAG. Experiment was performed as described in Figure 3A except that cell lines expressingMICU1WT-

HA, MICU1C463A-HA, MICU1WT-HA/MCU-FLAG, or MICU1C463A-HA/MCU-FLAG were used. IP was performed against HA. Eluates were analyzed by non-

reducing SDS-PAGE and autoradiography. For quantification, the intensities of the protein bands at different times were analyzed with ImageJ and the half time

calculated from the decrease in signal. Error bars represent SD.

(D) MICU1WT-HA becomes oxidized while it is interacting with MCU. Cells expressing MCU-FLAG and MICU1WT-HA were pulse labeled for 10 min and chased

with non-radioactive methionine for the indicated times. To enrich the MICU1 species that interact with MCU during maturation, native IP was performed against

FLAG and a subsequent denaturing ReIP against HA. As control, direct IPs against FLAG and against HAwere performed. Eluates were analyzed by non-reducing

SDS-PAGE and autoradiography.

(E) Model for uniplex maturation and MICU1 dimerization. After membrane-potential-dependent import, monomeric MICU1 assembles on MCU. It then forms a

disulfide-linked intermediate with Mia40 that is resolved by the recruitment of MICU2 and subsequent heterodimerization. The spatial preorientation of MICU1

and MICU2 on MCU could explain how an oxidoreductase like Mia40, which lacks extensive protein-protein interaction surfaces, can introduce intermolecular

disulfide bonds.
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C

Figure 5. The Disulfide Bond in the MICU1-

MCU2 Heterodimer Allows Regulation of

MCU Activity

(A and B) Coexpression of MCU and MICU1C463A

increases mitochondrial Ca2+ uptake compared to

coexpression of MCU and MICU1WT. Ca2+ uptake

was measured with D3cpv (A) and TN-XL (B),

respectively. Left: ATP-induced mitochondrial Ca2+

uptake in HEK293 cells coexpressingMICU1WT and

MCUWT (n = 160 for D3cpv, n = 10 for TN-XL) or

MICU1C463A and MCUWT (n = 134 for D3cpv, n = 14

for TN-XL). Middle: Analysis of basal Ca2+ concen-

tration in the mitochondrial matrix. Coexpression of

MCU with MICU1WT or MICU1C463A does not result

in increased [Ca2+]mito levels before addition of ATP.

Right: Analysis of mitochondrial Ca2+ uptake upon

ATP treatment. Average [Ca2+]mito values 5, 10, and

20 s after ATP addition. Coexpression of MCU and

MICU1C463A results in prolonged mitochondrial

Ca2+ uptake. Error bars represent SEM.

(C) Coexpression of MCU andMICU1C463A increases mitochondrial Ca2+ uptake even in the presence of MICU2. Left: ATP-inducedmitochondrial Ca2+ uptake in

HEK293 cells coexpressing MICU2, MCU and MICU1WT, (n = 134 for D3cpv) or MICU1C463A (n = 122 for D3cpv). Middle: Analysis of basal Ca2+ concentration in

themitochondrial matrix. Coexpression of MCU andMICU1WT or MICU1C463A does not result in increased [Ca2+]mito levels before addition of ATP. Right: Analysis

of mitochondrial Ca2+ uptake upon ATP treatment. Average [Ca2+]mito values 5, 10, 20, and 50 s after ATP addition. Coexpression of MCU, MICU2, and

MICU1C463A results in prolonged mitochondrial Ca2+ uptake. Error bars represent SEM.
pathways in the IMS and thereby expand our knowledge on the

function of Mia40.

MICU1 Represents the First Mia40 Substrate that
Acquires an Intermolecular Disulfide Bond
MICU1 was the center of our study. Its localization had been

intensely debated (Csordás et al., 2013; De Stefani et al., 2011;

Hung et al., 2014; Mallilankaraman et al., 2012; Perocchi et al.,

2010), and our study confirms the localization of MICU1 in the

IMS by a complementary, independent approach. This also sug-

gests that MICU1’s EF hands sense IMS Ca2+ levels.

MICU1 differs from previously identified Mia40 substrates by

several features: (1) it contains an MTS, which allows Mia40-in-

dependent import into mitochondria; (2) it plays a role in mito-

chondrial Ca2+ signaling (Csordás et al., 2013; de la Fuente

et al., 2014; Mallilankaraman et al., 2012; Patron et al., 2014;

Perocchi et al., 2010), a process that was not previously con-

nected to the mitochondrial disulfide relay. This is also reflected

by the decrease of Ca2+ uptake upon Mia40 depletion (Figures

S5L–S5O), although it has to be emphasized that this might be

a secondary effect, since Mia40 also imports, for example,

components of the respiratory chain; (3) it is the first Mia40

substrate with an intermolecular disulfide bond. Heterodimeri-

zation with MICU2 is likely catalyzed by Mia40 as the redox-

active cysteine 55 of Mia40 transiently interacts with cysteine

463 in MICU1, which at steady state, forms the mixed disufide

bond with a cysteine residue of MICU2. Moreover, Mia40-

MICU1 interaction preceded MICU1-MICU2 heterodimeriza-

tion. Interestingly, we do not observe that stability or kinetics

of disulfide bond formation are influenced by overexpression

or siRNA-mediated depletion of Mia40 (Figure S3). This is in

contrast to Mia40-dependent oxidation of classical Mia40 sub-

strates for which mitochondrial import critically depends on

oxidation and folding (Fischer et al., 2013). For these sub-

strates, the rate of oxidative folding is limited by Mia40 levels,

and consequently, lowered Mia40 levels impair import and
Cell
oxidation, while increased Mia40 levels accelerate oxidative

folding (Fischer et al., 2013). In contrast, we propose that in

the case of MICU1, which becomes imported in a Mia40-inde-

pendent manner, its initial binding to MCU and the recruitment

of MICU2 to this complex, rather than the availability of Mia40,

constitutes the time-critical step for intermolecular disulfide

bond formation. We also think that binding to MCU allows

the spatial alignment of MICU1 and MICU2 and that this en-

ables intermolecular disulfide formation by the small oxidore-

ductase Mia40.

Ca2+-Dependent Changes in Uniplex Composition
Regulate Its Activity
Mutation of cysteine residue 463 did not prevent the interaction

of MICU1 with MCU. However, it considerably decreased the

stability of MICU1, which could be partially rescued by coex-

pression of MCU. MCU has a far longer half-life compared to

MICU1 (Figure S4). This finding suggests that the mitochondrial

uniplex is a dynamic entity in which MICU molecules can be

exchanged without affecting MCU stability. This might in

different tissues enable adaptation of the properties of the uni-

plex as, for example, MICU1-MICU2 heterodimers are replaced

by MICU1-MICU1 or MICU1-MICU3 dimers. In line with this

notion is our finding that changes in Ca2+ levels affected the

interaction of MICU1 and MICU2 with MCU. It is tempting to

interpret these results in the light of a recent report and our

own data (Figure S5I) (Patron et al., 2014) that suggest an inhib-

itory role of MICU2 on the uniplex at resting Ca2+ concentra-

tions. Release of the MICU1-MICU2 dimer from MCU upon

increase in Ca2+ levels would remove this inhibitory unit from

the uniplex, allowing rapid Ca2+ uptake. Decrease in Ca2+ levels

would then lead to the re-recruitment of the MICU1-MICU2 het-

erodimer to MCU and a fast closure of the pore. It is tempting

to hypothesize that the re-recruitment depends on EMRE,

which might act as an anchor for the MICU heterodimer. In

this scenario, EMRE could hold MICU in proximity to MCU at
Metabolism 22, 721–733, October 6, 2015 ª2015 Elsevier Inc. 729
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Figure 6. Ca2+ Modulates the Protein Composition of the Uniplex

(A) Experimental procedure used in the experiments shown in (B)–(E), (G), and (H). Mild cell lysis with 0.2% DDM as performed in the presence of Ca2+ or EGTA

(-Ca2+; for concentrations, see legends). Subsequently,MCUorMICU1were enrichedby IP.Afterwashingandelution, sampleswere analyzedby immunoblotting.

(B) MICU1-HA does not coprecipitate with MCU-FLAG in the presence of Ca2+. The experiment was performed as described in (A). The mild lysis buffer either

contained 5 mM Ca2+ or 5 mM EGTA. Eluates were analyzed by immunoblotting against FLAG, HA, and VDAC1.

(legend continued on next page)
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high Ca2+ concentrations when the MICU dimer loses contact

to MCU. It will be exciting to explore such a role for EMRE in

the future.

EXPERIMENTAL PROCEDURES

Constructs, Cell Lines, siRNAs, and Antibodies

Refer to Tables S4 and S5, respectively. Antibodies: anti-HA (Sigma and

Roche), anti-FLAG (Sigma), anti-Strep (iba-lifesciences), anti-MICU1 (Sigma),

anti-MICU2 (Thermo Scientific), anti-Smac (Sigma), anti-Mitofilin (Protein-

tech), anti-LDH (Santa Cruz Biotechnology), and anti-Mia40 (self-made;

Fischer et al., 2013). Secondary antibodies were directed against mouse

or rabbit (BioRad). The following siRNAs were used: Hs_CHCHD4_5,

Hs_CHCHD4_6, Hs_CBARA1_8, Hs_ CBARA1_12, Hs_EFHA1_7, and control

siRNA (Quiagen).

Pulse-Chase Biogenesis Assay

These experiments were performed as previously described (Fischer et al.,

2013). In short, cells were starved with cysteine and methionine-free me-

dium (Sigma) for 15 min at 37�C and were pulse labeled for 10 min at

37�C with medium containing [35S]-methionine at a concentration of

200 mCi/ml (Perkin Elmer). Pulse labeling was stopped by adding chase me-

dium containing 20 mM methionine. Importantly, care was taken to prevent

post-lysis thiol-disulfide exchange reactions by incubation with 20 mM NEM

before lysis.

For denaturing IPs, the chase was stopped after variable times at 37�C by

adding PBS containing 20 mM NEM. Cells were centrifuged for 10 min at

500 3 g and lysed in 250 ml 30 mM Tris [pH 8.1], 150 mM NaCl, 1 mM

EDTA, and 1.6% SDS and boiled for 20 min. Then, 750 ml Triton X-100

was added, and the lysate was incubated for 1 hr at 4�C. Samples were

cleared by centrifugation at 25,000 3 g for 1 hr, and the supernatant was

subjected to IP with antibodies conjugated to protein A beads at 4�C over-

night. Beads were washed three times using lysis buffer containing Triton

X-100 and once with lysis buffer without Triton X-100 and SDS. Proteins

were eluted by adding Laemmli buffer (2% SDS, 60 mM Tris, pH 6.8, 10%

glycerol and 0.0025% bromophenol blue) to the dried beads and subsequent

boiling for 5 min at 95�C. Samples were analyzed by SDS-PAGE and

autoradiography.

For native mild IPs, the chase was stopped after variable times at 37�C by

adding native mild lysis buffer (50 mM HEPES [pH 7.4], 150 mM NaCl, 0.2%

n-Dodecyl b-D-Maltopyranoside (DDM), and 5 mM EDTA). Cells were incu-

bated for 10min at 4�C and centrifuged for 1 hr at 25,0003 g. The supernatant

was subjected to IP with antibodies conjugated to protein A beads at 4�Cover-

night. Samples were washed three times using native mild lysis buffer and

once with lysis buffer without DDM. Elution and subsequent analysis was per-

formed as described above.
(C) MCU-FLAG does not coprecipitate with MICU1-HA in the presence of Ca2+.

noprecipitated. Eluates were analyzed by immunoblotting against FLAG, HA, an

(D) MICU1C463A-HA binds in Ca2+-sensitive manner to MCU-FLAG. The experime

FLAG, HA, and VDAC1.

(E) Endogenous MICU1 andMICU2 do not coprecipitate with MCU-FLAG in the pr

a cell line that only expressedMCU-FLAGwas used. Eluates were analyzed by imm

band.

(F) Ca2+ uptake in mitochondria of semipermeabilized HEK293 cells. HEK293 cel

Flag and 4mtD3cpv and were semi-permeabilized with 50 mM digitonin. Subseq

mitochondria was quantified. Error bars represent SEM.

(G) Ca2+-dependent binding of MICU1 to MCU is dependent on the EF hands in M

FLAG -bound MICU1-HA in dependence of the Ca2+ concentration was performe

expressing MCU-Flag and either MICU1WT-HA or MICU1DEF-HA were used. Elua

tification of bands was performed with ImageJ and correlated to the activity of m

(H) MICU1 andMICU2 binding to MCU exhibits similar Ca2+ concentration depend

which only expressed MCU-FLAG was used. Eluates were analyzed by immuno

(I) Model for Ca2+-dependent rearrangement of the mitochondrial uniplex. At low

increase of Ca2+ concentrations in the IMS, Ca2+ binding to the EF hands in the M

MCU and lead to the release of MICU1-MICU2 from the uniplex.

Cell
Native Mild IP for Ca2+ Titration

Plates were washed with PBS and lysed while attached to the plate with

native mild lysis buffer. The lysis buffer without Ca2+ contained 50 mM

HEPES (pH 7.4), 150 mM NaCl, 0.2% n-Dodecyl b-D-Maltopyranoside

(DDM), and 5 mM EDTA. To obtain the mild native lysis buffers with different

concentrations of Ca2+ we mixed the mild native lysis buffer without Ca2+

with mild native lysis buffer with Ca2+ (50 mM HEPES [pH 7.4], 150 mM

NaCl, 0.2% n- DDM, and 5 mM CaCl2) according to http://maxchelator.

stanford.edu/CaEGTA-TS.htm. Cells were lysed for 10 min at 4�C and

centrifuged for 1 hr at 25,000 3 g. The supernatant was subjected to IP

with antibodies conjugated to protein A beads at 4�C overnight. Samples

were washed three times using native mild lysis buffer and once with lysis

buffer without DDM. Elution and subsequent analysis was performed as

described above.

Stable Isotope Labeling in Cell Culture and Mass Spectrometry

Analysis

Experiments were performed as described (Küttner et al., 2013). Affinity puri-

fications with Strep-tactin beadswere performed after NEM treatment of intact

cells. For details, see the Supplemental Information.

Measurements of Mitochondrial Ca2+ Levels

Mitochondrial Ca2+ levels were measured using mitochondrial matrix-targeted

genetically encoded Ca2+ sensors. Mitochondrial Ca2+ uptake in HEK293 cells

was induced by 10 mM ATP and in HeLa cells by 100 mM histamine. Statistical

significance was determined using two-sided unpaired Student’s t test. For

details see the Supplemental Information.

SUPPLEMENTAL INFORMATION

Supplemental Information includes six figures, five tables, and Supplemental

Experimental Procedures and can be found with this article online at http://

dx.doi.org/10.1016/j.cmet.2015.08.019.
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Klöppel, C., Suzuki, Y., Kojer, K., Petrungaro, C., Longen, S., Fiedler, S., Keller,

S., and Riemer, J. (2011). Mia40-dependent oxidation of cysteines in domain I

of Ccs1 controls its distribution between mitochondria and the cytosol. Mol.

Biol. Cell 22, 3749–3757.

Koch, J.R., and Schmid, F.X. (2014). Mia40 targets cysteines in a hydrophobic

environment to direct oxidative protein folding in the mitochondria. Nat.

Commun. 5, 3041.

Kojer, K., Bien, M., Gangel, H., Morgan, B., Dick, T.P., and Riemer, J. (2012).

Glutathione redox potential in the mitochondrial intermembrane space is

linked to the cytosol and impacts the Mia40 redox state. EMBO J. 31, 3169–

3182.
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