6 research outputs found

    Inherited DOCK2 deficiency in patients with early-onset invasive infections

    No full text
    BACKGROUND: Combined immunodeficiencies (CIDs) denote inborn errors of T-cell immunity with T cells present but quantitatively or functionally deficient. Impaired humoral immunity, either due to a primary B cell defect or secondary to the T-cell defect, is also frequent. Consequently, patients with CID display severe infections and/or autoimmunity. The specific molecular, cellular, and clinical features of many types of CID remain unknown. METHODS: We performed genetic and cellular immunological studies in five unrelated children who shared a history of early-onset invasive bacterial and viral infections, with lymphopenia and defective T-, B-, and NK-cell responses. Two patients died early in childhood, whereas the other three underwent allogeneic hematopoietic stem cell transplantation with normalization of T cell function and clinical improvement. RESULTS: We identified bi-allelic mutations in the Dedicator Of Cytokinesis 2 (DOCK2) gene in these five patients. RAC1 activation was impaired in T cells. Chemokine-induced migration and actin polymerization were defective in T, B, and NK cells. NK-cell degranulation was also affected. The production of interferon (IFN)-α and -λ by peripheral blood mononuclear cells (PBMCs) was diminished following virus infection. Moreover, in DOCK2-deficient fibroblasts, virus replication was increased and there was enhanced virus-induced cell death, which could be normalized by treatment with IFN-α2β or upon expression of wild-type DOCK2. CONCLUSIONS: Autosomal recessive DOCK2 deficiency is a Mendelian disorder with pleiotropic defects of hematopoietic and non-hematopoietic immunity. Children with clinical features of CID, especially in the presence of early-onset, invasive infections may have this condition

    Epilepsy subtype-specific copy number burden observed in a genome-wide study of 17\u2009458 subjects

    No full text

    Exome sequencing in amyotrophic lateral sclerosis identifies risk genes and pathways

    No full text
    Amyotrophic lateral sclerosis (ALS) is a devastating neurological disease with no effective treatment. We report the results of a moderate-scale sequencing study aimed at increasing the number of genes known to contribute to predisposition for ALS. We performed whole-exome sequencing of 2869 ALS patients and 6405 controls. Several known ALS genes were found to be associated, and TBK1 (the gene encoding TANK-binding kinase 1) was identified as an ALS gene. TBK1 is known to bind to and phosphorylate a number of proteins involved in innate immunity and autophagy, including optineurin (OPTN) and p62 (SQSTM1/sequestosome), both of which have also been implicated in ALS. These observations reveal a key role of the autophagic pathway in ALS and suggest specific targets for therapeutic intervention

    Genome-wide identification and phenotypic characterization of seizure-associated copy number variations in 741,075 individuals

    No full text

    Shared genetic basis between genetic generalized epilepsy and background electroencephalographic oscillations

    No full text

    Distinct gene-set burden patterns underlie common generalized and focal epilepsies

    No full text
    corecore