148 research outputs found

    Stimulation and Inhibition of Lymphangiogenesis Via Adeno-Associated Viral Gene Delivery

    Get PDF
    The lymphatic vessels can be selectively stimulated to grow in adult mice, rats and pigs by application of viral vectors expressing the lymphangiogenic factors VEGF-C or VEGF-D. Vice versa, lymphangiogenesis in various pathological settings can be inhibited by the blocking of the VEGF-C/VEGFR3 interaction using a ligand-binding soluble form of VEGFR3. Furthermore, the recently discovered plasticity of meningeal and lacteal lymphatic vessels provides novel opportunities for their manipulation in disease. Adenoviral and adeno-associated viral vectors (AAVs) provide suitable tools for establishing short- and long-term gene expression, respectively and adenoviral vectors have already been used in clinical trials. As an example, we describe here ways to manipulate the meningeal lymphatic vasculature in the adult mice via AAV-mediated gene delivery. The possibility of stimulation and inhibition of lymphangiogenesis in adult mice has enabled the analysis of the role and function of lymphatic vessels in mouse models of disease.Peer reviewe

    High-resolution 3D analysis of mouse small-intestinal stroma.

    Get PDF
    Here we detail a protocol for whole-mount immunostaining of mouse small-intestinal villi that can be used to generate high-resolution 3D images of all gut cell types, including blood and lymphatic vessel cells, neurons, smooth muscle cells, fibroblasts and immune cells. The procedure describes perfusion, fixation, dissection, immunostaining, mounting, clearing, confocal imaging and quantification, using intestinal vasculature as an example. As intestinal epithelial cells prevent visualization with some antibodies, we also provide an optional protocol to remove these cells before fixation. In contrast to alternative current techniques, our protocol enables the entire villus to be visualized with increased spatial resolution of cell location, morphology and cell-cell interactions, thus allowing for easy quantification of phenotypes. The technique, which takes 7 d from mouse dissection to microscopic examination, will be useful for researchers who are interested in most aspects of intestinal biology, including mucosal immunology, infection, nutrition, cancer biology and intestinal microbiota

    Immunohistochemical analysis of brain lesions using S100B and glial fibrillary acidic protein antibodies in arundic acid- (ONO-2506) treated stroke-prone spontaneously hypertensive rats

    Get PDF
    Stroke-prone spontaneously hypertensive rats (SHRSP) used as a model of essential hypertension cause a high incidence of brain stroke on the course of hypertension. Incidences and sizes of brain lesions are known to relate to the astrocyte activities. Therefore, relation between brain damage and the expression profile of the astrocytes was investigated with morphometric and immunohistochemical analyses using astrocyte marker antibodies of S100B and glial fibrillary acidic protein (GFAP) with or without arundic acid administration, a suppressor on the activation of astrocytes. Arundic acid extended the average life span of SHRSP. An increase in brain tissue weight was inhibited concomitant with a lower rate of gliosis/hemosiderin deposit/scarring in brain lesions. S100B- or GFAP-positive dot and filamentous structures were decreased in arundic acid-treated SHRSP, and this effect was most pronounced in the cerebral cortex, white matter, and pons, and less so in the hippocampus, diencephalon, midbrain, and cerebellum. Blood pressure decreased after administration of arundic acid in the high-dose group (100 mg/kg/day arundic acid), but not in the low-dose group (30 mg/kg/day). These data indicate that arundic acid can prevent hypertension-induced stroke, and may inhibit the enlargement of the stroke lesion by preventing the inflammatory changes caused by overproduction of the S100B protein in the astrocytes

    Elevated expression of VEGFR-3 in lymphatic endothelial cells from lymphangiomas

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Lymphangiomas are neoplasias of childhood. Their etiology is unknown and a causal therapy does not exist. The recent discovery of highly specific markers for lymphatic endothelial cells (LECs) has permitted their isolation and characterization, but expression levels and stability of molecular markers on LECs from healthy and lymphangioma tissues have not been studied yet. We addressed this problem by profiling LECs from normal dermis and two children suffering from lymphangioma, and also compared them with blood endothelial cells (BECs) from umbilical vein, aorta and myometrial microvessels.</p> <p>Methods</p> <p>Lymphangioma tissue samples were obtained from two young patients suffering from lymphangioma in the axillary and upper arm region. Initially isolated with anti-CD31 (PECAM-1) antibodies, the cells were separated by FACS sorting and magnetic beads using anti-podoplanin and/or LYVE-1 antibodies. Characterization was performed by FACS analysis, immunofluorescence staining, ELISA and micro-array gene analysis.</p> <p>Results</p> <p>LECs from foreskin and lymphangioma had an almost identical pattern of lymphendothelial markers such as podoplanin, Prox1, reelin, cMaf and integrin-α1 and -α9. However, LYVE-1 was down-regulated and VEGFR-2 and R-3 were up-regulated in lymphangiomas. Prox1 was constantly expressed in LECs but not in any of the BECs.</p> <p>Conclusion</p> <p>LECs from different sources express slightly variable molecular markers, but can always be distinguished from BECs by their Prox1 expression. High levels of VEGFR-3 and -2 seem to contribute to the etiology of lymphangiomas.</p

    Myocardial Hypertrophy Overrides the Angiogenic Response to Hypoxia

    Get PDF
    Background: Cyanosis and myocardial hypertrophy frequently occur in combination. Hypoxia or cyanosis can be potent inducers of angiogenesis, regulating the expression of hypoxia-inducible factors (HIF), vascular endothelial growth factors (VEGF), and VEGF receptors (VEGFR-1 and 2); in contrast, pressure overload hypertrophy is often associated with impaired pro-angiogenic signaling and decreased myocardial capillary density. We hypothesized that the physiological pro-angiogenic response to cyanosis in the hypertrophied myocardium is blunted through differential HIF and VEGF-associated signaling. Methods and Results: Newborn rabbits underwent aortic banding and, together with sham-operated littermates, were transferred into a hypoxic chamber (FiO2 = 0.12) at 3 weeks of age. Control banded or sham-operated rabbits were housed in normoxia. Systemic cyanosis was confirmed (hematocrit, arterial oxygen saturation, and serum erythropoietin). Myocardial tissue was assayed for low oxygen concentrations using a pimonidazole adduct. At 4 weeks of age, HIF-1α and HIF-2α protein levels, HIF-1α DNA-binding activity, and expression of VEGFR-1, VEGFR-2, and VEGF were determined in hypoxic and normoxic rabbits. At 6 weeks of age, left-ventricular capillary density was assessed by immunohistochemistry. Under normoxia, capillary density was decreased in the banded rabbits compared to non-banded littermates. As expected, non-hypertrophied hearts responded to hypoxia with increased capillary density; however, banded hypoxic rabbits demonstrated no increase in angiogenesis. This blunted pro-angiogenic response to hypoxia in the hypertrophied myocardium was associated with lower HIF-2α and VEGFR-2 levels and increased HIF-1α activity and VEGFR-1 expression. In contrast, non-hypertrophied hearts responded to hypoxia with increased HIF-2α and VEGFR-2 expression with lower VEGFR-1 expression. Conclusion: The participation of HIF-2α and VEGFR-2 appear to be required for hypoxia-stimulated myocardial angiogenesis. In infant rabbit hearts with pressure overload hypertrophy, this pro-angiogenic response to hypoxia is effectively uncoupled, apparently in part due to altered HIF-mediated signaling and VEGFR subtype expression

    Zebrafish ProVEGF-C Expression, Proteolytic Processing and Inhibitory Effect of Unprocessed ProVEGF-C during Fin Regeneration

    Get PDF
    BACKGROUND: In zebrafish, vascular endothelial growth factor-C precursor (proVEGF-C) processing occurs within the dibasic motif HSIIRR(214) suggesting the involvement of one or more basic amino acid-specific proprotein convertases (PCs) in this process. In the present study, we examined zebrafish proVEGF-C expression and processing and the effect of unprocessed proVEGF-C on caudal fin regeneration. METHODOLOGY/PRINCIPAL FINDINGS: Cell transfection assays revealed that the cleavage of proVEGF-C, mainly mediated by the proprotein convertases Furin and PC5 and to a less degree by PACE4 and PC7, is abolished by PCs inhibitors or by mutation of its cleavage site (HSIIRR(214) into HSIISS(214)). In vitro, unprocessed proVEGF-C failed to activate its signaling proteins Akt and ERK and to induce cell proliferation. In vivo, following caudal fin amputation, the induction of VEGF-C, Furin and PC5 expression occurs as early as 2 days post-amputation (dpa) with a maximum levels at 4-7 dpa. Using immunofluorescence staining we localized high expression of VEGF-C and the convertases Furin and PC5 surrounding the apical growth zone of the regenerating fin. While expression of wild-type proVEGF-C in this area had no effect, unprocessed proVEGF-C inhibited fin regeneration. CONCLUSIONS/SIGNIFICANCES: Taken together, these data indicate that zebrafish fin regeneration is associated with up-regulation of VEGF-C and the convertases Furin and PC5 and highlight the inhibitory effect of unprocessed proVEGF-C on fin regeneration

    Kaposin-B Enhances the PROX1 mRNA Stability during Lymphatic Reprogramming of Vascular Endothelial Cells by Kaposi's Sarcoma Herpes Virus

    Get PDF
    Kaposi's sarcoma (KS) is the most common cancer among HIV-positive patients. Histogenetic origin of KS has long been elusive due to a mixed expression of both blood and lymphatic endothelial markers in KS tumor cells. However, we and others discovered that Kaposi's sarcoma herpes virus (KSHV) induces lymphatic reprogramming of blood vascular endothelial cells by upregulating PROX1, which functions as the master regulator for lymphatic endothelial differentiation. Here, we demonstrate that the KSHV latent gene kaposin-B enhances the PROX1 mRNA stability and plays an important role in KSHV-mediated PROX1 upregulation. We found that PROX1 mRNA contains a canonical AU-rich element (ARE) in its 3′-untranslated region that promotes PROX1 mRNA turnover and that kaposin-B stimulates cytoplasmic accumulation of the ARE-binding protein HuR through activation of the p38/MK2 pathway. Moreover, HuR binds to and stabilizes PROX1 mRNA through its ARE and is necessary for KSHV-mediated PROX1 mRNA stabilization. Together, our study demonstrates that kaposin-B plays a key role in PROX1 upregulation during lymphatic reprogramming of blood vascular endothelial cells by KSHV

    Paneth Cells in Intestinal Homeostasis and Tissue Injury

    Get PDF
    Adult stem cell niches are often co-inhabited by cycling and quiescent stem cells. In the intestine, lineage tracing has identified Lgr5+ cells as frequently cycling stem cells, whereas Bmi1+, mTert+, Hopx+ and Lrig1+ cells appear to be more quiescent. Here, we have applied a non-mutagenic and cell cycle independent approach to isolate and characterize small intestinal label-retaining cells (LRCs) persisting in the lower third of the crypt of Lieberkühn for up to 100 days. LRCs do not express markers of proliferation and of enterocyte, goblet or enteroendocrine differentiation, but are positive for Paneth cell markers. While during homeostasis, LR/Paneth cells appear to play a supportive role for Lgr5+ stem cells as previously shown, upon tissue injury they switch to a proliferating state and in the process activate Bmi1 expression while silencing Paneth-specific genes. Hence, they are likely to contribute to the regenerative process following tissue insults such as chronic inflammation

    Oxidative stress causes ERK phosphorylation and cell death in cultured retinal pigment epithelium: Prevention of cell death by AG126 and 15-deoxy-delta 12, 14-PGJ(2)

    Get PDF
    BACKGROUND: The retina, which is exposed to both sunlight and very high levels of oxygen, is exceptionally rich in polyunsaturated fatty acids, which makes it a favorable environment for the generation of reactive oxygen species. The cytotoxic effects of hydrogen peroxide (H(2)O(2)) induced oxidative stress on retinal pigment epithelium were characterized in this study. METHODS: The MTT cell viability assay, Texas-Red phalloidin staining, immunohistochemistry and Western blot analysis were used to assess the effects of oxidative stress on primary human retinal pigment epithelial cell cultures and the ARPE-19 cell line. RESULTS: The treatment of retinal pigment epithelial cells with H(2)O(2 )caused a dose-dependent decrease of cellular viability, which was preceded by a significant cytoskeletal rearrangement, activation of the Extracellular signal-Regulated Kinase, lipid peroxidation and nuclear condensation. This cell death was prevented partially by the prostaglandin derivative, 15d-PGJ(2 )and by the protein kinase inhibitor, AG126. CONCLUSION: 15d-PGJ(2 )and AG126 may be useful pharmacological tools in the future capable of preventing oxidative stress induced RPE cell death in human ocular diseases
    corecore