7 research outputs found

    Capacity of Nerium oleander to Phytoremediate Sb-Contaminated Soils Assisted by Organic Acids and Oxygen Nanobubbles

    No full text
    Antimony (Sb) is considered to be a toxic metalloid of increasing prevalence in the environment. Although several phytoremediation studies have been conducted, research regarding the mechanisms of Sb accumulation and translocation within plants remains limited. In this study, soil from a shooting range was collected and spiked with an initial Sb(III) concentration of 50 mg/kg. A pot experiment was conducted to investigate whether Nerium oleander could accumulate Sb in the root and further translocate it to the aboveground tissue. Biostimulation of the soil was performed by the addition of organic acids (OAs), consisting of citric, ascorbic, and oxalic acid at low (7 mmol/kg) or high (70 mmol/kg) concentrations. The impact of irrigation with water supplemented with oxygen nanobubbles (O2NBs) was also investigated. The results demonstrate that there was a loss in plant growth in all treatments and the presence of OAs and O2NBs assisted the plant to maintain the water content at the level close to the control. The plant was not affected with regards to chlorophyll content in all treatments, while the antioxidant enzyme activity of guaiacol peroxidase (GPOD) in the roots was found to be significantly higher in the presence of Sb. Results revealed that Sb accumulation was greater in the treatment with the highest OAs concentration, with a bioconcentration factor greater than 1.0. The translocation of Sb for every treatment was very low, confirming that N. oleander plant cannot transfer Sb from the root to the shoots. A higher amount of Sb was accumulated in the plants that were irrigated with the O2NBs, although the translocation of Sb was not increased. The present study provides evidence for the phytoremediation capacity of N. oleander to bioaccumulate Sb when assisted by biostimulation with OAs

    Εφαρμογή νανοφυσαλίδων στην απολύμανση πόσιμου νερού και στη λειτουργία βιο-αντιδραστήρων

    No full text
    A major threat to human health is considered the bacterial contamination and the subsequent infections and there is dire need to prevent the waterborne diseases to ensure water safety. Moreover, the occurrence and the fate of trace organic compounds in wastewater have attracted the attention and the concern of the scientific community since conventional wastewater treatment plants (WWTPs) have not been designed for their elimination leading to their discharge to natural water bodies and the effects of chronic exposure to low levels of these compounds are unknown. Within the context of upgrading the water and wastewater treatment processes, the development of new treatment technologies is addressed, with a view to provide high quality water at the least possible cost to the consumers. Nanobubbles (NBs) technology is an emerging solution, which is considered that has brought revolution in the field of water treatment and contaminants remediation. NBs are tiny spherical bubbles with a diameter less than 1 μm and exhibit notable characteristics in comparison to the macrobubbles (MaBs). First and foremost, the long residence time thanks to their stability is highlighted as a vital property, since it has been found that NBs remain stable in aqueous solution for a long period of time, due to their negligible buoyancy. Moreover, NBs improve the mass transfer effect and the oxidation ability, on account of the fact that the contact area of gas and water is increased. In addition, the gas solubility and chemical reactions at the gas-liquid boundary are remarkably enhanced. In terms of water disinfection processes, ozonation is widely used since ozone is a strong oxidant and highly efficient to inactivate pathogenic organisms for the prevention of waterborne diseases spread to users and the environment. However, the performance of this method is limited by the fact that ozone is unstable and short lived as the decay rate in water is high. By combining the higher gaseous ozone half-life time (3 days versus 20 min at 20 oC) and the noteworthy properties of NBs technology, the use of ozone nanobubbles (OzNBs) is proposed for water and ballast water disinfection. The main objective of this Application of Νano-bubbles in Drinking Water Disinfection and the Operation of Bioreactors II study is to compare the effect of ozone nanobubbles on the inactivation of the pathogenic microorganisms and the residual activity compared to the conventional ozonation in tap water and ballast water. In this study, four harmful types of bacteria commonly used as primary indicators of contamination in fresh water quality were selected (Escherichia coli, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis). Based on the experimental results, applying OzNBs technology had a considerable effect on inactivation and the ozone decay rate was greatly decreased, hence it can be concluded that it is a promising technology for drinking water treatment. As regards the ballast water disinfection, the survival rate of Escherichia coli (E. coli), which was used as indicator microorganism, along with the ozone consumption at different salinities (1.5, 4, 8 and 15 PSU) and bacterial concentrations (10^7 , 10^6 , and 10^5 CFU/mL) with and without supplementation of OzNBs were investigated. The results indicated a statistical difference in the residual concentration of total residual oxidants (TRO) with the presence of OzNBs at salinity level 1.5 PSU and at 4 PSU only at the lowest bacterial content. At a low salinity and high bacterial concentration, the concentration of TRO was 6-fold higher in the presence of OzNBs. The salinity of water has a strong impact on the residual concentration of ozone. When salinity is increased, ozone reacts more rapidly with the bromide and chloride ions. The use of OzNBs exhibited a greater disinfection performance and higher residual activity. In this thesis, another application of NBs technology that was investigated was the implementation of air nanobubbles (ANBs) in constructed wetlands (CWs) as it has been found that artificial aeration enhances the removal rate of conventional pollutants (COD, nitrogen and phosphorus) as well as organic compounds. The oxygen supply was conducted via nanobubble injection by a nanotube porous diffuser and in-situ electrochemical production. A higher removal rate was observed when ANBs were supplemented in wetland bed through the nanotube diffuser in phenol and toluene removal and in combination of both compared to the control. In addition, the oxygen content remained at a high level (above 7 mg/L) in all experimental cycles. Moreover, primary treated wastewater collected from Wastewater Treatment Plant (WWTP) in Platanias (Chania) was used as substrate in wetlands along with the concentration of phenol and toluene at 100 ppm. Also in this case, the CW supplemented with ANBs by nanotube diffuser exhibited better performance in phenol and toluene removal, while the addition of III wastewater enhanced the efficiency of integrated-electrolysis CW. All the wastewater quality parameters were measured, exhibiting great removal efficiencies in all CWs, however no significant difference was reported among the treatments. Finally, another field in which NBs were applied was bioremediation. In particular, the impact of irrigation with water supplemented with oxygen nanobubbles (ONBs) was also examined. In this study, soil from a shooting range was collected and spiked with an initial antimonite (Sb(III)) concentration of 50 mg/kg and a pot experiment was conducted to investigate whether Nerium oleander assisted by organic acids (OAs) and ONBs could accumulate Sb in the root and further translocate it to the aboveground tissue. The translocation of Sb for every treatment was very low, confirming that N. oleander plant cannot transfer Sb from the root to the shoots. A higher amount of Sb was accumulated in the plants that were irrigated with the ONBs. As regards the bioaccumulation of the elements Fe, Mg and Mn from soil to plant tissues, Fe and Mn were not mobilized, whereas Mg was extracted as the bioconcentration factor (BCF) was evaluated above one and significant higher with the presence of ONBs. The BCF of Mn and Mg were significantly greater when ONBs were used for irrigation, while the opposite trend was observed regarding the translocation factor. Nanobubbles can enhance the stabilization of these elements in roots and not the translocation to the upper part of the plants. Moreover, the mobilization of antimony (Sb) from soil by non-bioaugmented and bioaugmented processes coupled with nanobubble technology was investigated. ONBs enhanced the mobilization of Sb in the non-bioaugmented experiments. The bioaugmentation had a significant effect in Sb release to the aqueous phase since the percentage of Sb remaining in the soil was found to be lower in the bioaugmented experiment implying the mobilization of about 75% of the original Sb in the soil. Nanobubbles were found to have no significant effect on Sb release from the soils, since the same percentage of Sb was also found in the bioaugmented treatment with NBs water. In conclusion, the overall outcome of this study based on the experimental evidence is the significant contribution of NBs technology to various environmental fields including disinfection, wastewater treatment, and phytoremediation. In this regard, the application of NBs technology is paving the way to novel integrated and highly efficient water and soil treatment systems.Η βακτηριακή μόλυνση του νερού αποτελεί σοβαρή απειλή για τη δημόσια υγεία και είναι επιτακτική ανάγκη να αποφευχθεί, διασφαλίζοντας την ποιότητα του νερού ώστε να μην υπάρξει μετάδοση ασθενειών μέσω του νερού. Επίσης, η παρουσία των οργανικών ρύπων κρίνεται ως θέμα μείζονος σημασίας από την διεθνή επιστημονική κοινότητα, καθώς οι συμβατικές εγκαταστάσεις λυμάτων δεν έχουν σχεδιαστεί με την προοπτική της απομάκρυνσης των ενώσεων αυτών, με αποτέλεσμα να γίνεται μερική ή ολική απόρριψή τους στους τελικούς αποδέκτες. Στο πλαίσιο αναβάθμισης των μεθόδων επεξεργασίας του νερού και των λυμάτων, η ανάπτυξη νέων τεχνολογιών που έχουν ως σκοπό να προσφέρουν υψηλής ποιότητας νερό στο χαμηλότερο δυνατό κόστος είναι στο επίκεντρο. Σε αυτό το πλαίσιο εντάσσεται η τεχνολογία των νανοφυσαλίδων (Nanobubbles, NBs), η οποία είναι μια τεχνολογία αιχμής που έχει τραβήξει το επιστημονικό ενδιαφέρον τα τελευταία χρόνια λόγω των πιθανών εφαρμογών τους σε πολλούς τομείς της επιστήμης και τεχνολογίας. Η σημασία τους είναι ευρέως γνωστή για τoν ρόλο που διαδραματίζουν σε σχέση με το μέγεθος του και την σταθερότητα τους. Πιο συγκεκριμένα, πρόκειται για μικροσκοπικές σφαιρικές φυσαλίδες κάτω από 1 μm με μοναδικές φυσικές και μηχανικές ιδιότητες και σημαντικά πλεονεκτήματα έναντι των μακροφυσαλίδων. Μία από τις πιο αξιοσημείωτες ιδιοτήτες τους είναι η μεγάλη διάρκεια ζωής λόγω της σχεδόν αμελητέαςάνωσης/πλευστότητας. Επιπρόσθετα, λόγω των μοναδικών τους ιδιοτήτων, οι νανοφυσαλίδες οδηγούν σε υψηλούς ρυθμούς μεταφοράς μάζας καθώς η εσωτερική πίεση της φυσαλίδας είναι αντιστρόφως ανάλογη με το μέγεθος της. Επομένως, οι νανοφυσαλίδες έχουν μεγάλη ειδική επιφάνεια που εντείνει τον ρυθμό μεταφοράς μάζας λόγω της μεγαλύτερης επιφάνειας επαφής μεταξύ της αέριας και της υγρής φάσης. Επιπλέον, η μεγάλη ειδική επιφάνεια τους συμβάλλει στην προώθηση χημικών αντιδράσεων, φυσικής προσρόφησης, και μεταφοράς μάζας στη διεπιφάνεια αερίου-υγρού. Ο οζονισμός είναι μια μέθοδος απολύμανσης που χρησιμοποιείται ευρέως, καθώς είναι γνωστό ότι το όζον είναι ένα από τα ισχυρά οξειδωτικά και είναι αποτελεσματικό εναντίον των βακτηρίων και των ιών. Ωστόσο είναι μια ασταθής ένωση και η αποτελεσματικότητα της μεθόδου περιορίζεται από το γρήγορο ρυθμό μείωσης της οξειδωτικής ικανότητας του διαλυμένου όζοντος. Ο χρόνος ημιζωής του όζοντος στην αέρια φάση είναι πολύ μεγαλύτερος (3 μέρες έναντι 20 min στους 20 oC) και επομένως η σύζευξη του όζοντος με την τεχνολογία των νανοφυσαλίδων δύναται να ενισχύσει την απολυμαντική δράση (και υπολειπόμενη δραστικότητα). Η παρούσα διδακτορική διατριβή έχει ως στόχο την μελέτη των εφαρμογών των νανοφυσαλίδων με ιδιαίτερη αναφορά στην επεξεργασία πόσιμου νερού για καλύτερη απόδοση στην εξουδετέρωση παθογόνων βακτηρίων. Επιπλέον, διερευνήθηκε η υπολειπόμενη δράση των νανοφυσαλίδων όζοντος. Ο κύριος στόχος της μελέτης είναι η σύγκριση της τεχνολογίας των νανοφυσαλίδων όζοντος σε σύγκριση με τον συμβατικό οζονισμό ως προς την απολύμανση καθώς και την απολυμαντική δράση του όζοντος. Τέσσερα είδη βακτηρίων (Escherichia coli, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis) μελετήθηκαν, τα οποία είναισημαντικά για την ποιότητα του νερού. Με βάση τα αποτελέσματα, η εφαρμογή της τεχνολογίας των νανοφυσαλίδων όζοντος παρουσίασε σημαντική επίδραση στην αδρανοποίηση των βακτηρίων και στον ρυθμό διάσπασης του όζοντος, καθιστώντας την μια πολλά υποσχόμενη τεχνολογία για την επεξεργασία του πόσιμου νερού. Επιπλέον όσον αφορά την επεξεργασία του θαλάσσιου έρματος, μελετήθηκε η απόδοση της απολύμανσηςτης αρχικής συγκέντρωσης του βακτηρίου Εschericia coli (Ε. coli) (10^7, 10^6, and 10^5 CFU/mL) και της υπολειπόμενης συγκέντρωσης του όζοντος σε διάφορες αλατότητες (1.5, 4, 8 and 15 PSU) με την χρήση των νανοφυσαλίδων όζοντος σε σύγκριση με τον συμβατικό οζονισμό. Τα αποτελέσματα έδειξαν στατιστική διαφορά στην υπολειπόμενη συγκέντρωση οξειδωτικών που έχουν δημιουργηθεί από την αντίδραση του θαλασσινού νερού με το όζον με την χρήση των νανοφυσαλίδων όζοντος στην χαμηλότερη αλατότητα, 1.5 PSU για όλες τις βακτηριακές συγκεντρώσεις καθώς και στα 4 PSU αλατότητα μόνο στην χαμηλότερη συγκέντρωση. Στην χαμηλότερη αλατότητα, η υπολειπόμενη συγκέντρωση των οξειδωτικών με την εφαρμογή των νανοφυσαλίδων όζοντος είναι 6 φορές μεγαλύτερη σε σύγκριση με τον συμβατικό οζονισμό. Η αλατότητα παρουσιάζει ισχυρή επιρροή στην υπολειπόμενη δραστικότητα του όζοντος, καθώς όσο αυξάνεται η αλατότητα, αυξάνονται τα ιόντα χλωρίου και βρωμίου με τα οποία το όζον αντιδρά ταχέως. Η χρήση νανοφυσαλίδων όζοντος φαίνεται να αποδίδει καλύτερα καθώς επιτυγχάνεται μεγαλύτερη απόδοση απολύμανσης και μεγαλύτερη υπολειπόμενη συγκέντρωση. Μια επιπλέον εφαρμογή των νανοφυσαλίδων που μελετήθηκε στην συγκεκριμένη διδακτορική διατριβή είναι η εφαρμογή των νανοφυσαλίδων αέρα σε τεχνητούς υγροβιότοπους, καθώς μελέτες έχουν δείξει ότι η παροχή αερισμού στους τεχνητούς υγροβιότοπους οδηγεί σε καλύτερη απόδοση απομάκρυνσης οργανικών ρύπων. Η παροχή αερισμού επετεύχθη μέσω των νανοφυσαλίδων, οι οποίες παρήχθησαν μέσω ενός νανοσωλήνα-διαχυτήρα και μέσω της ηλεκτρόλυσης. Στον τεχνητό υγροβιότοπο με τονδιαχυτήρα των νανοφυσαλίδων εντοπίστηκε η καλύτερη απομάκρυνση της φαινόλης και του τολουολίου καθώς και στον συνδυασμό των δύο ρύπων σε σύγκριση με τoν υγροβιότοπο ελέγχου. Επιπλέον, η συγκέντρωση του οξυγόνου σε αυτό το σύστημα διατηρήθηκε σε υψηλά επίπεδα (πάνω από 7 mg/L) σε όλους τους πειραματικούς κύκλους. Στη συνέχεια, πρωτοβάθμια-επεξεργασμένο αστικό λύμα προερχόμενο από τον βιολογικό καθαρισμό της περιοχής του Πλατανιά (Χανιά) χρησιμοποιήθηκε ως υπόστρωμα μαζί με τους οργανικούς ρύπους φαινόλης και τολουολίου αρχικής συγκέντρωσης 100 ppm. Και σε αυτή την περίπτωση, αυτός ο υγροβιότοπος επέδειξε την καλύτερη απομάκρυνση των οργανικών ρύπων, φαινόλη και τολουόλιο, καθώς η προσθήκη του αστικού λύματος ενίσχυσε την απόδοση του υγροβιότοπου, ο οποίος λειτουργεί με την ηλεκτρόλυση. Μετρήθηκαν όλες οι παράμετροι ποιότητας των λυμάτων, παρουσιάζοντας μεγάλη αποτελεσματικότητα απομάκρυνσης σε όλα τα συστήματα, ωστόσο δεν αναφέρθηκε σημαντική διαφορά μεταξύ των τεχνητών υγροβιότοπων. Τέλος, ένας άλλος τομέας στον οποίο εφαρμόστηκαν οι νανοφυσαλίδες είναι η βιολογική αποκατάσταση. Ειδικότερα, στην φυτοαποκατάσταση εξετάστηκε η επίδραση της άρδευσης με νερό με νανοφυσαλίδες οξυγόνου (ONBs). Σε αυτή τη μελέτη, χώμα από ένα πεδίο βολής συλλέχθηκε και εμπλουτίστηκε με αντιμονίτη (Sb(III)) αρχικής συγκέντρωσης 50 mg/kg και διεξήχθη ένα πείραμα για να διερευνηθεί εάν η πικροδάφνη (Nerium oleander) σε συνδυασμό με οργανικά οξέα (OAs) και ONBs μπορεί να συσσωρεύσει το αντιμόνιο Sb στη ρίζα και να το μεταφέρει περαιτέρω στον υπέργειο ιστό. Η μετατόπιση του Sb για κάθε επεξεργασία ήταν πολύ χαμηλή, επιβεβαιώνοντας ότι το φυτό N. oleander δεν μπορεί να μεταφέρει το Sb από τη ρίζα στους βλαστούς. Μεγαλύτερη ποσότητα Sb συσσωρεύτηκε στα φυτά που ποτίστηκαν με τα ONBs. Όσον αφορά στηνβιοσυσσώρευση των στοιχείων Fe, Mg και Mn από το έδαφος στους φυτικούς ιστούς, το Fe και το Mn δεν κινητοποιήθηκαν, ενώ το Mg εκχυλίστηκε καθώς ο παράγοντας βιοσυγκέντρωσης αξιολογήθηκε πάνω από ένα και σημαντικά υψηλότερος με την παρουσία ONBs. Ο παράγοντας βιοσυσσώρευσης του Mn και του Mg ήταν σημαντικά μεγαλύτερος όταν τα ONBs χρησιμοποιήθηκαν, ενώ η αντίθετη τάση παρατηρήθηκε όσον αφορά τον παράγοντα μετατόπισης. Οι νανοφυσαλίδες μπορούν να ενισχύσουν τη σταθεροποίηση αυτών των μετάλλων στις ρίζες ενώ δεν συμβάλουν στην μετατόπιση τους στο υπέργειο τμήμα του φυτού. Επιπλέον, διερευνήθηκε η κινητοποίηση του αντιμονίου (Sb) από το έδαφος με βιοενισχυμένες ή όχι διαδικασίες σε συνδυασμό με την τεχνολογία νανοφυσαλίδων. Τα ONBs ενίσχυσαν την κινητοποίηση του Sb στα μη-βιοενισχυμένα πειράματα. Η βιοενίσχυση είχε σημαντική επίδραση στην απελευθέρωση Sb στην υδατική φάση αφού το ποσοστό του Sb που παραμένει στο έδαφος βρέθηκε να είναι χαμηλότερο στο βιοενισχυμένο πείραμα υποδηλώνοντας την κινητοποίηση περίπου 75% του αρχικού Sb στο έδαφος. Οι νανοφυσαλίδες βρέθηκε να μην έχουν σημαντική επίδραση στην απελευθέρωση Sb από τα εδάφη, καθώς το ίδιο ποσοστό Sb βρέθηκε επίσης στη βιοενισχυμένη επεξεργασία με νερό NBs. Εν κατακλείδι, το βασικό συμπέρασμα που προκύπτει από την συγκεκριμένη έρευνα είναι η σημαντική συμβολή της τεχνολογίας των νανοφυσαλίδων καθώς βρέθηκε να είναι αποτελεσματική σε διάφορους περιβαλλοντικούς τομείς, όπως η απολύμανση, η διαχείριση λυμάτων και η φυτοεξυγίανση. Επομένως, η εφαρμογή των νανοφυσαλίδων είναι μια πολλά υποσχόμενη μέθοδος και συνίσταται για συστήματα επεξεργασίας νερού και εδάφους

    Capacity of <i>Nerium oleander</i> to Phytoremediate Sb-Contaminated Soils Assisted by Organic Acids and Oxygen Nanobubbles

    No full text
    Antimony (Sb) is considered to be a toxic metalloid of increasing prevalence in the environment. Although several phytoremediation studies have been conducted, research regarding the mechanisms of Sb accumulation and translocation within plants remains limited. In this study, soil from a shooting range was collected and spiked with an initial Sb(III) concentration of 50 mg/kg. A pot experiment was conducted to investigate whether Nerium oleander could accumulate Sb in the root and further translocate it to the aboveground tissue. Biostimulation of the soil was performed by the addition of organic acids (OAs), consisting of citric, ascorbic, and oxalic acid at low (7 mmol/kg) or high (70 mmol/kg) concentrations. The impact of irrigation with water supplemented with oxygen nanobubbles (O2NBs) was also investigated. The results demonstrate that there was a loss in plant growth in all treatments and the presence of OAs and O2NBs assisted the plant to maintain the water content at the level close to the control. The plant was not affected with regards to chlorophyll content in all treatments, while the antioxidant enzyme activity of guaiacol peroxidase (GPOD) in the roots was found to be significantly higher in the presence of Sb. Results revealed that Sb accumulation was greater in the treatment with the highest OAs concentration, with a bioconcentration factor greater than 1.0. The translocation of Sb for every treatment was very low, confirming that N. oleander plant cannot transfer Sb from the root to the shoots. A higher amount of Sb was accumulated in the plants that were irrigated with the O2NBs, although the translocation of Sb was not increased. The present study provides evidence for the phytoremediation capacity of N. oleander to bioaccumulate Sb when assisted by biostimulation with OAs

    Εφαρμογή νανοφυσαλίδων στην απολύμανση πόσιμου νερού και στη λειτουργία βιοαντιδραστήρων

    No full text
    Summarization: A major threat to human health is considered the bacterial contamination and the subsequent infections and there is dire need to prevent the waterborne diseases to ensure water safety. Moreover, the occurrence and the fate of trace organic compounds in wastewater have attracted the attention and the concern of the scientific community since conventional wastewater treatment plants (WWTPs) have not been designed for their elimination leading to their discharge to natural water bodies and the effects of chronic exposure to low levels of these compounds are unknown. Within the context of upgrading the water and wastewater treatment processes, the development of new treatment technologies is addressed, with a view to provide high quality water at the least possible cost to the consumers. Nanobubbles (NBs) technology is an emerging solution, which is considered that has brought revolution in the field of water treatment and contaminants remediation. NBs are tiny spherical bubbles with a diameter less than 1 μm and exhibit notable characteristics in comparison to the macrobubbles (MaBs). First and foremost, the long residence time thanks to their stability is highlighted as a vital property, since it has been found that NBs remain stable in aqueous solution for a long period of time, due to their negligible buoyancy. Moreover, NBs improve the mass transfer effect and the oxidation ability, on account of the fact that the contact area of gas and water is increased. In addition, the gas solubility and chemical reactions at the gas-liquid boundary are remarkably enhanced. In terms of water disinfection processes, ozonation is widely used since ozone is a strong oxidant and highly efficient to inactivate pathogenic organisms for the prevention of waterborne diseases spread to users and the environment. However, the performance of this method is limited by the fact that ozone is unstable and short lived as the decay rate in water is high. By combining the higher gaseous ozone half-life time (3 days versus 20 min at 20 oC) and the noteworthy properties of NBs technology, the use of ozone nanobubbles (OzNBs) is proposed for water and ballast water disinfection. The main objective of this study is to compare the effect of ozone nanobubbles on the inactivation of the pathogenic microorganisms and the residual activity compared to the conventional ozonation in tap water and ballast water. In this study, four harmful types of bacteria commonly used as primary indicators of contamination in fresh water quality were selected (Escherichia coli, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis). Based on the experimental results, applying OzNBs technology had a considerable effect on inactivation and the ozone decay rate was greatly decreased, hence it can be concluded that it is a promising technology for drinking water treatment. As regards the ballast water disinfection, the survival rate of Escherichia coli (E. coli), which was used as indicator microorganism, along with the ozone consumption at different salinities (1.5, 4, 8 and 15 PSU) and bacterial concentrations (107, 106, and 105 CFU/mL) with and without supplementation of OzNBs were investigated. The results indicated a statistical difference in the residual concentration of total residual oxidants (TRO) with the presence of OzNBs at salinity level 1.5 PSU and at 4 PSU only at the lowest bacterial content. At a low salinity and high bacterial concentration, the concentration of TRO was 6-fold higher in the presence of OzNBs. The salinity of water has a strong impact on the residual concentration of ozone. When salinity is increased, ozone reacts more rapidly with the bromide and chloride ions. The use of OzNBs exhibited a greater disinfection performance and higher residual activity. In this thesis, another application of NBs technology that was investigated was the implementation of air nanobubbles (ANBs) in constructed wetlands (CWs) as it has been found that artificial aeration enhances the removal rate of conventional pollutants (COD, nitrogen and phosphorus) as well as organic compounds. The oxygen supply was conducted via nanobubble injection by a nanotube porous diffuser and in-situ electrochemical production. A higher removal rate was observed when ANBs were supplemented in wetland bed through the nanotube diffuser in phenol and toluene removal and in combination of both compared to the control. In addition, the oxygen content remained at a high level (above 7 mg/L) in all experimental cycles. Moreover, primary-treated wastewater collected from Wastewater Treatment Plant (WWTP) in Platanias (Chania) was used as substrate in wetlands along with the concentration of phenol and toluene at 100 ppm. Also in this case, the CW supplemented with ANBs by nanotube diffuser exhibited better performance in phenol and toluene removal, while the addition of wastewater enhanced the efficiency of integrated-electrolysis CW. All the wastewater quality parameters were measured, exhibiting great removal efficiencies in all CWs, however no significant difference was reported among the treatments. Finally, another field in which NBs were applied was bioremediation. In particular, the impact of irrigation with water supplemented with oxygen nanobubbles (ONBs) was also examined. In this study, soil from a shooting range was collected and spiked with an initial antimonite (Sb(III)) concentration of 50 mg/kg and a pot experiment was conducted to investigate whether Nerium oleander assisted by organic acids (OAs) and ONBs could accumulate Sb in the root and further translocate it to the aboveground tissue. The translocation of Sb for every treatment was very low, confirming that N. oleander plant cannot transfer Sb from the root to the shoots. A higher amount of Sb was accumulated in the plants that were irrigated with the ONBs. As regards the bioaccumulation of the elements Fe, Mg and Mn from soil to plant tissues, Fe and Mn were not mobilized, whereas Mg was extracted as the bioconcentration factor (BCF) was evaluated above one and significant higher with the presence of ONBs. The BCF of Mn and Mg were significantly greater when ONBs were used for irrigation, while the opposite trend was observed regarding the translocation factor. Nanobubbles can enhance the stabilization of these elements in roots and not the translocation to the upper part of the plants. Moreover, the mobilization of antimony (Sb) from soil by non-bioaugmented and bioaugmented processes coupled with nanobubble technology was investigated. ONBs enhanced the mobilization of Sb in the non-bioaugmented experiments. The bioaugmentation had a significant effect in Sb release to the aqueous phase since the percentage of Sb remaining in the soil was found to be lower in the bioaugmented experiment implying the mobilization of about 75% of the original Sb in the soil. Nanobubbles were found to have no significant effect on Sb release from the soils, since the same percentage of Sb was also found in the bioaugmented treatment with NBs water. In conclusion, the overall outcome of this study based on the experimental evidence is the significant contribution of NBs technology to various environmental fields including disinfection, wastewater treatment, and phytoremediation. In this regard, the application of NBs technology is paving the way to novel integrated and highly efficient water and soil treatment systems.Περίληψη: Η βακτηριακή μόλυνση του νερού αποτελεί σοβαρή απειλή για τη δημόσια υγεία και είναι επιτακτική ανάγκη να αποφευχθεί, διασφαλίζοντας την ποιότητα του νερού ώστε να μην υπάρξει μετάδοση ασθενειών μέσω του νερού. Επίσης, η παρουσία των οργανικών ρύπων κρίνεται ως θέμα μείζονος σημασίας από την διεθνή επιστημονική κοινότητα, καθώς οι συμβατικές εγκαταστάσεις λυμάτων δεν έχουν σχεδιαστεί με την προοπτική της απομάκρυνσης των ενώσεων αυτών, με αποτέλεσμα να γίνεται μερική ή ολική απόρριψή τους στους τελικούς αποδέκτες. Στο πλαίσιο αναβάθμισης των μεθόδων επεξεργασίας του νερού και των λυμάτων, η ανάπτυξη νέων τεχνολογιών που έχουν ως σκοπό να προσφέρουν υψηλής ποιότητας νερό στο χαμηλότερο δυνατό κόστος είναι στο επίκεντρο. Σε αυτό το πλαίσιο εντάσσεται η τεχνολογία των νανοφυσαλίδων (Nanobubbles, NBs), η οποία είναι μια τεχνολογία αιχμής που έχει τραβήξει το επιστημονικό ενδιαφέρον τα τελευταία χρόνια λόγω των πιθανών εφαρμογών τους σε πολλούς τομείς της επιστήμης και τεχνολογίας. Η σημασία τους είναι ευρέως γνωστή για τoν ρόλο που διαδραματίζουν σε σχέση με το μέγεθος του και την σταθερότητα τους. Πιο συγκεκριμένα, πρόκειται για μικροσκοπικές σφαιρικές φυσαλίδες κάτω από 1 μm με μοναδικές φυσικές και μηχανικές ιδιότητες και σημαντικά πλεονεκτήματα έναντι των μακροφυσαλίδων. Μία από τις πιο αξιοσημείωτες ιδιοτήτες τους είναι η μεγάλη διάρκεια ζωής λόγω της σχεδόν αμελητέας άνωσης/πλευστότητας. Επιπρόσθετα, λόγω των μοναδικών τους ιδιοτήτων, οι νανοφυσαλίδες οδηγούν σε υψηλούς ρυθμούς μεταφοράς μάζας καθώς η εσωτερική πίεση της φυσαλίδας είναι αντιστρόφως ανάλογη με το μέγεθος της. Επομένως, οι νανοφυσαλίδες έχουν μεγάλη ειδική επιφάνεια που εντείνει τον ρυθμό μεταφοράς μάζας λόγω της μεγαλύτερης επιφάνειας επαφής μεταξύ της αέριας και της υγρής φάσης. Επιπλέον, η μεγάλη ειδική επιφάνεια τους συμβάλλει στην προώθηση χημικών αντιδράσεων, φυσικής προσρόφησης, και μεταφοράς μάζας στη διεπιφάνεια αερίου-υγρού. Ο οζονισμός είναι μια μέθοδος απολύμανσης που χρησιμοποιείται ευρέως, καθώς είναι γνωστό ότι το όζον είναι ένα από τα ισχυρά οξειδωτικά και είναι αποτελεσματικό εναντίον των βακτηρίων και των ιών. Ωστόσο είναι μια ασταθής ένωση και η αποτελεσματικότητα της μεθόδου περιορίζεται από το γρήγορο ρυθμό μείωσης της οξειδωτικής ικανότητας του διαλυμένου όζοντος. Ο χρόνος ημιζωής του όζοντος στην αέρια φάση είναι πολύ μεγαλύτερος (3 μέρες έναντι 20 min στους 20 oC) και επομένως η σύζευξη του όζοντος με την τεχνολογία των νανοφυσαλίδων δύναται να ενισχύσει την απολυμαντική δράση (και υπολειπόμενη δραστικότητα). Η παρούσα διδακτορική διατριβή έχει ως στόχο την μελέτη των εφαρμογών των νανοφυσαλίδων με ιδιαίτερη αναφορά στην επεξεργασία πόσιμου νερού για καλύτερη απόδοση στην εξουδετέρωση παθογόνων βακτηρίων. Επιπλέον, διερευνήθηκε η υπολειπόμενη δράση των νανοφυσαλίδων όζοντος. Ο κύριος στόχος της μελέτης είναι η σύγκριση της τεχνολογίας των νανοφυσαλίδων όζοντος σε σύγκριση με τον συμβατικό οζονισμό ως προς την απολύμανση καθώς και την απολυμαντική δράση του όζοντος. Τέσσερα είδη βακτηρίων (Escherichia coli, Bacillus cereus, Staphylococcus aureus, Enterococcus faecalis) μελετήθηκαν, τα οποία είναι σημαντικά για την ποιότητα του νερού. Με βάση τα αποτελέσματα, η εφαρμογή της τεχνολογίας των νανοφυσαλίδων όζοντος παρουσίασε σημαντική επίδραση στην αδρανοποίηση των βακτηρίων και στον ρυθμό διάσπασης του όζοντος, καθιστώντας την μια πολλά υποσχόμενη τεχνολογία για την επεξεργασία του πόσιμου νερού. Επιπλέον όσον αφορά την επεξεργασία του θαλάσσιου έρματος, μελετήθηκε η απόδοση της απολύμανσης της αρχικής συγκέντρωσης του βακτηρίου Εschericia coli (Ε. coli) (107 , 106, and 105 CFU/mL) και της υπολειπόμενης συγκέντρωσης του όζοντος σε διάφορες αλατότητες (1.5, 4, 8 and 15 PSU) με την χρήση των νανοφυσαλίδων όζοντος σε σύγκριση με τον συμβατικό οζονισμό. Τα αποτελέσματα έδειξαν στατιστική διαφορά στην υπολειπόμενη συγκέντρωση οξειδωτικών που έχουν δημιουργηθεί από την αντίδραση του θαλασσινού νερού με το όζον με την χρήση των νανοφυσαλίδων όζοντος στην χαμηλότερη αλατότητα, 1.5 PSU για όλες τις βακτηριακές συγκεντρώσεις καθώς και στα 4 PSU αλατότητα μόνο στην χαμηλότερη συγκέντρωση. Στην χαμηλότερη αλατότητα, η υπολειπόμενη συγκέντρωση των οξειδωτικών με την εφαρμογή των νανοφυσαλίδων όζοντος είναι 6 φορές μεγαλύτερη σε σύγκριση με τον συμβατικό οζονισμό. Η αλατότητα παρουσιάζει ισχυρή επιρροή στην υπολειπόμενη δραστικότητα του όζοντος, καθώς όσο αυξάνεται η αλατότητα, αυξάνονται τα ιόντα χλωρίου και βρωμίου με τα οποία το όζον αντιδρά ταχέως. Η χρήση νανοφυσαλίδων όζοντος φαίνεται να αποδίδει καλύτερα καθώς επιτυγχάνεται μεγαλύτερη απόδοση απολύμανσης και μεγαλύτερη υπολειπόμενη συγκέντρωση. Μια επιπλέον εφαρμογή των νανοφυσαλίδων που μελετήθηκε στην συγκεκριμένη διδακτορική διατριβή είναι η εφαρμογή των νανοφυσαλίδων αέρα σε τεχνητούς υγροβιότοπους, καθώς μελέτες έχουν δείξει ότι η παροχή αερισμού στους τεχνητούς υγροβιότοπους οδηγεί σε καλύτερη απόδοση απομάκρυνσης οργανικών ρύπων. Η παροχή αερισμού επετεύχθη μέσω των νανοφυσαλίδων, οι οποίες παρήχθησαν μέσω ενός νανοσωλήνα-διαχυτήρα και μέσω της ηλεκτρόλυσης. Στον τεχνητό υγροβιότοπο με τον διαχυτήρα των νανοφυσαλίδων εντοπίστηκε η καλύτερη απομάκρυνση της φαινόλης και του τολουολίου καθώς και στον συνδυασμό των δύο ρύπων σε σύγκριση με τoν υγροβιότοπο ελέγχου. Επιπλέον, η συγκέντρωση του οξυγόνου σε αυτό το σύστημα διατηρήθηκε σε υψηλά επίπεδα (πάνω από 7 mg/L) σε όλους τους πειραματικούς κύκλους. Στη συνέχεια, πρωτοβάθμια-επεξεργασμένο αστικό λύμα προερχόμενο από τον βιολογικό καθαρισμό της περιοχής του Πλατανιά (Χανιά) χρησιμοποιήθηκε ως υπόστρωμα μαζί με τους οργανικούς ρύπους φαινόλης και τολουολίου αρχικής συγκέντρωσης 100 ppm. Και σε αυτή την περίπτωση, αυτός ο υγροβιότοπος επέδειξε την καλύτερη απομάκρυνση των οργανικών ρύπων, φαινόλη και τολουόλιο, καθώς η προσθήκη του αστικού λύματος ενίσχυσε την απόδοση του υγροβιότοπου, ο οποίος λειτουργεί με την ηλεκτρόλυση. Μετρήθηκαν όλες οι παράμετροι ποιότητας των λυμάτων, παρουσιάζοντας μεγάλη αποτελεσματικότητα απομάκρυνσης σε όλα τα συστήματα, ωστόσο δεν αναφέρθηκε σημαντική διαφορά μεταξύ των τεχνητών υγροβιότοπων. Τέλος, ένας άλλος τομέας στον οποίο εφαρμόστηκαν οι νανοφυσαλίδες είναι η βιολογική αποκατάσταση. Ειδικότερα, στην φυτοαποκατάσταση εξετάστηκε η επίδραση της άρδευσης με νερό με νανοφυσαλίδες οξυγόνου (ONBs). Σε αυτή τη μελέτη, χώμα από ένα πεδίο βολής συλλέχθηκε και εμπλουτίστηκε με αντιμονίτη (Sb(III)) αρχικής συγκέντρωσης 50 mg/kg και διεξήχθη ένα πείραμα για να διερευνηθεί εάν η πικροδάφνη (Nerium oleander) σε συνδυασμό με οργανικά οξέα (OAs) και ONBs μπορεί να συσσωρεύσει το αντιμόνιο Sb στη ρίζα και να το μεταφέρει περαιτέρω στον υπέργειο ιστό. Η μετατόπιση του Sb για κάθε επεξεργασία ήταν πολύ χαμηλή, επιβεβαιώνοντας ότι το φυτό N. oleander δεν μπορεί να μεταφέρει το Sb από τη ρίζα στους βλαστούς. Μεγαλύτερη ποσότητα Sb συσσωρεύτηκε στα φυτά που ποτίστηκαν με τα ONBs. Όσον αφορά στην βιοσυσσώρευση των στοιχείων Fe, Mg και Mn από το έδαφος στους φυτικούς ιστούς, το Fe και το Mn δεν κινητοποιήθηκαν, ενώ το Mg εκχυλίστηκε καθώς ο παράγοντας βιοσυγκέντρωσης αξιολογήθηκε πάνω από ένα και σημαντικά υψηλότερος με την παρουσία ONBs. Ο παράγοντας βιοσυσσώρευσης του Mn και του Mg ήταν σημαντικά μεγαλύτερος όταν τα ONBs χρησιμοποιήθηκαν, ενώ η αντίθετη τάση παρατηρήθηκε όσον αφορά τον παράγοντα μετατόπισης. Οι νανοφυσαλίδες μπορούν να ενισχύσουν τη σταθεροποίηση αυτών των μετάλλων στις ρίζες ενώ δεν συμβάλουν στην μετατόπιση τους στο υπέργειο τμήμα του φυτού. Επιπλέον, διερευνήθηκε η κινητοποίηση του αντιμονίου (Sb) από το έδαφος με βιοενισχυμένες ή όχι διαδικασίες σε συνδυασμό με την τεχνολογία νανοφυσαλίδων. Τα ONBs ενίσχυσαν την κινητοποίηση του Sb στα μη-βιοενισχυμένα πειράματα. Η βιοενίσχυση είχε σημαντική επίδραση στην απελευθέρωση Sb στην υδατική φάση αφού το ποσοστό του Sb που παραμένει στο έδαφος βρέθηκε να είναι χαμηλότερο στο βιοενισχυμένο πείραμα υποδηλώνοντας την κινητοποίηση περίπου 75% του αρχικού Sb στο έδαφος. Οι νανοφυσαλίδες βρέθηκε να μην έχουν σημαντική επίδραση στην απελευθέρωση Sb από τα εδάφη, καθώς το ίδιο ποσοστό Sb βρέθηκε επίσης στη βιοενισχυμένη επεξεργασία με νερό NBs. Εν κατακλείδι, το βασικό συμπέρασμα που προκύπτει από την συγκεκριμένη έρευνα είναι η σημαντική συμβολή της τεχνολογίας των νανοφυσαλίδων καθώς βρέθηκε να είναι αποτελεσματική σε διάφορους περιβαλλοντικούς τομείς, όπως η απολύμανση, η διαχείριση λυμάτων και η φυτοεξυγίανση. Επομένως, η εφαρμογή των νανοφυσαλίδων είναι μια πολλά υποσχόμενη μέθοδος και συνίσταται για συστήματα επεξεργασίας νερού και εδάφους

    Disinfection applications of ozone micro- and nanobubbles

    No full text
    Summarization: Micro- and nanobubbles (MNBs) are microscopic gas bodies sized at micro (<100 μm) and nanoscale (<1 μm), that have a long lifetime in aqueous solutions and large specific surface area due to their small size. Recently, scientific interest has been focused on ozone micro- and nanobubbles (OMNBs) used in disinfection processes since research findings support the idea that ozone micro and nanosized bubbles can significantly improve the disinfection capacity and the residual activity of ozone. The aim of this critical review is to present recent studies which investigate the feasibility of ozone-based disinfection processes by exploiting the strong oxidizing ability of ozone and the noteworthy longevity of MNBs in aqueous solutions. Properties of MNBs and generation techniques are briefly discussed besides the monitoring methods for their characterization in terms of size and number. In this critical review, we provide recent research related to the application of OMNBs in disinfection of drinking water, as well as in aquaculture, agriculture, and wastewater treatment. Finally, research gaps and limitations of this technology are highlighted and directions for future studies are suggested.Presented on

    Capacity of Nerium oleander to phytoremediate Sb-contaminated soils assisted by organic acids and oxygen nanobubbles

    No full text
    Summarization: Antimony (Sb) is considered to be a toxic metalloid of increasing prevalence in the environment. Although several phytoremediation studies have been conducted, research regarding the mechanisms of Sb accumulation and translocation within plants remains limited. In this study, soil from a shooting range was collected and spiked with an initial Sb(III) concentration of 50 mg/kg. A pot experiment was conducted to investigate whether Nerium oleander could accumulate Sb in the root and further translocate it to the aboveground tissue. Biostimulation of the soil was performed by the addition of organic acids (OAs), consisting of citric, ascorbic, and oxalic acid at low (7 mmol/kg) or high (70 mmol/kg) concentrations. The impact of irrigation with water supplemented with oxygen nanobubbles (O2NBs) was also investigated. The results demonstrate that there was a loss in plant growth in all treatments and the presence of OAs and O2NBs assisted the plant to maintain the water content at the level close to the control. The plant was not affected with regards to chlorophyll content in all treatments, while the antioxidant enzyme activity of guaiacol peroxidase (GPOD) in the roots was found to be significantly higher in the presence of Sb. Results revealed that Sb accumulation was greater in the treatment with the highest OAs concentration, with a bioconcentration factor greater than 1.0. The translocation of Sb for every treatment was very low, confirming that N. oleander plant cannot transfer Sb from the root to the shoots. A higher amount of Sb was accumulated in the plants that were irrigated with the O2NBs, although the translocation of Sb was not increased. The present study provides evidence for the phytoremediation capacity of N. oleander to bioaccumulate Sb when assisted by biostimulation with OAs.Παρουσιάστηκε στο: Plant

    MPs and NPs intake and heavy metals accumulation in tissues of Palinurus elephas (J.C. Fabricius, 1787), from NW Aegean sea, Greece

    No full text
    Summarization: European marine waters are infested with plastic, with an average density of 1 plastic item in every four square-meters. Research relevant to MPs-NPs ingestion by wild decapods in European waters is limited, none of which regards the European spiny lobster. Totally 4102 plastic particles were extracted from the spiny lobster stomach tissues of both sexes. Out of the 63 samples analysed only three (4.8%) of them were found with no plastic particles. The range of number of MPs in stomachs was from 20 to 273 MPs individual−1. The 98.3% were fragments. In total 3833 plastic particles were extracted from the gill tissues of both sexes. MPs were found in all samples (n = 50),99.2% of the detected particles were fragments. The MPs detected in gills ranged from 11 to 339 MPs individual−1. The DLS method was used in order to evaluate the NPs presence. Nanoplastics were detected in 22.6% of stomachs and in the 48.1% of gills. A total of 43 polymer types were identified in both tissues. Also, our study assessed the accumulation of heavy metals at the edible tail muscle. Certain elements were detected above the EU's Maximum Residue Level, including arsenic. The present results are alarming and the potential human health implications could be serious.Presented on: Environmental Pollutio
    corecore