94 research outputs found

    Transfer Length of Strands in Prestressed Concrete Piles

    Get PDF
    A top bar effect has been identified in prestressed concrete piles. The effect that this top bar effect has on the development of the prestressing strand is investigated. Strand transfer length is found to be proportional to the observed end slip. While the average transfer length of all strands in a section may satisfy the assumptions inherent in the ACI transfer length equation, due to the top bar effect, top-cast strand transfer lengths are considerably in excess of the ACI-calculated value. The flexural behavior of the pile, accounting for varying transfer lengths through its section, is investigated. Finally, recommendations for in-plant testing and acceptance criteria for prestressed strand bond quality are proposed

    Top Bar Effects in Prestressed Concrete Piles

    Get PDF
    The top bar effect in reinforced concrete is a widely recognized phenomenon. Currently, the ACI Building Code prescribes a 30% increase in the development length of top cast reinforcing bars. No such provision is required for strands in prestressed concrete members. In this paper, the top bar effect for prestressing strands is introduced. Parameters affecting top bar phenomena in prestressed concrete piles are identified, and strategies for reducing this effect are presented. Finally, for the first time, the application of a top bar effect factor for prestressed concrete development length calculations, similar to the one applied in reinforced concrete structural elements, is proposed

    Excessive Strand End Slip in Prestressed Piles

    Get PDF
    This paper presents the results of a research project that investigated excessive strand end slip observed recently in some prestressed piles. From measurements taken in the field, it is apparent that the problem o excessive initial strand slip is independent of pile shape and size. Strand end slip is evident in piles of different manufacturers in different states in the Southeast. Excessive strand end slip was found in both the top and bottom of the cross section of the piles, although the top portion of the cross section generally exhibited much higher initial slip. Several preventive measures can be adopted to reduce the excessive strand end slip. These preventive measures include: a) proper concrete mixture proportioning to reduce top bar effect; b) use of higher-strength concrete with the lowest possible slump and setting time; c) assessment of the condition of the strands prior to installation to insure excellent bond characteristics; d) gradual release of prestress, with an optimal release sequence; and e) use of adequate vibration to ensure consolidation. The strand end slip measured at five prestressing plants in the Southeast is considerably higher than the allowable end slip and is expected to affect the pile performance. If the strand slip theory is adopted, the strand development length increases substantially due to the excessive strand end slip. A top bar effect factor similar to the one used in reinforced concrete design is recommended. To maintain the excellent quality of precast and prestressed concrete products, manufacturers should adopt a dynamic quality control process that follows the rapid changes in the industry. More tests are necessary to ensure excellent quality, such as the Moustafa or an equivalent test, to assess the bond capabilities of the strands, end slip measurements, and direct measurement of the transfer length. Installation of piles should proceed in a manner to alleviate the top bar effects by placing piles alternately in their best and worst directions

    Influence of Mortar Rheology on Aggregate Settlement

    Get PDF
    The influence of the rheology of fresh concrete on the settlement of aggregate is examined. Fresh concrete exhibits a yield stress that, under certain conditions, prevents the settlement of coarse aggregate, although its density is larger than that of the suspending mortar. Calculations, based on estimates of the yield stress obtained from slump tests, predict that aggregate normally used in concrete should not sink. To test this prediction, the settlement of a stone in fresh mortar is monitored. The stone does not sink in the undisturbed mortar (which has a high yield stress), but sinks when the mortar is vibrated, presumably due to a large reduction in its yield stress. This implies that during placement of concrete, the aggregate settles only while the concrete is being vibrated. A unique experimental method for measuring aggregate settlement is also introduced and demonstrated

    Assessing the quality of concrete – reinforcement interface in Self Compacting Concrete

    Get PDF
    © 2019 Elsevier Ltd. This manuscript is made available under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International licence (CC BY-NC-ND 4.0). For further details please see: https://creativecommons.org/licenses/by-nc-nd/4.0/Research has shown that even self-compacting concrete (SCC) mixtures can exhibit the so-called “top-bar effect” which impacts bond and anchorage. Several instances of conflicting results have nevertheless been published regarding interfacial bond between self-compacting concrete and steel reinforcement. The scope of this paper is to present an experimental methodology for assessing the quality of the interface between self-compacting concrete and ribbed reinforcement. For this purpose, seven different self-compacting and four normally vibrated concrete (NVC) mixtures with diverse rheological characteristics were examined. Digital Image Analysis of cut sections containing reinforcing bars at different cast-heights was used as a diagnostic tool. The study illustrates that the quality of the interface is strongly affected by the viscosity of the SCC mixtures and by the slump values in NVC. Self-compacting concrete mixtures show greater inherent robustness and cohesion at the steel–concrete interface compared to conventionally vibrated concretes.Peer reviewe

    Adenoid cystic carcinoma intermingled with ductal carcinoma of the breast: a case report and review of the literature

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>Adenoid cystic cancer of the breast is a rare condition, and even rarer are the cases where it is histologically mixed with other variants of cancer within a single lesion. In this report, one of the few cases of mixed adenoid cystic breast cancer intermingled with the infiltrating ductal variant is presented. A subsequent review of the relevant literature presents the existing experience in treating mixed breast cancers with adenoid cystic components with regard to diagnosis, treatment, and prognosis.</p> <p>Case presentation</p> <p>We describe a case of mixed adenoid cystic cancer of the breast with infiltrating ductal carcinoma in a 67-year-old Caucasian woman who underwent mastectomy with sentinel node biopsy.</p> <p>Conclusion</p> <p>Surgery remains the cornerstone of treatment of these patients, and radiotherapy is administered when breast-conserving treatment is undertaken or a large tumor with affected lymph nodes is present. Hormonal treatment does not have a role, as estrogen receptors are always absent from both tumor components. Chemotherapy is nearly always administered on the basis of estrogen receptor and progesterone negativity and the more aggressive potential of the non-adenoid cystic component. The de-differentiation of an indolent type of cancer to a more aggressive one may affect the prognosis.</p

    Personalised external aortic root support (PEARS) in Marfan syndrome: Analysis of 1-9 year outcomes by intention-to-treat in a cohort of the first 30 consecutive patients to receive a novel tissue and valve-conserving procedure, compared with the published results of aortic root replacement

    Get PDF
    Objective: Among people with Marfan syndrome who have a typical aortic root aneurysm, dissection is a characteristic cause of premature death. To pre-empt Type A dissection, composite root replacement with a mechanical valve became the standard of care in the 1980s and 1990s. This is being superseded by valvesparing aortic root replacement to avoid lifelong anticoagulation. In 2004, a total root and valve-sparing procedure, personalised external aortic support, was introduced. We report here results among the first 30 recipients. Methods: From cross-sectional digital images, the patient's own aorta is modelled by computer aided design and a replica is made in thermoplastic by rapid prototyping. On this, a personalised support of a macroporous polymer mesh is manufactured. The mesh is positioned around the aorta, closely applied from the aortoventricular junction to beyond the brachiocephalic artery. The operation is performed with a beating heart and usually without cardiopulmonary bypass. Results: Between 2004 and 2011, 30 patients, median age 28 years (IQR 20-44) had this operation and have been prospectively followed for 1.4-8.8 years by February 2013. During a total of 133 patient-years there were no deaths or cerebrovascular, aortic or valve-related events. These early outcomes are better than published results for the more radical extirpative root replacement operations. Conclusions: The aortic valve, the root architecture, and the blood/endothelia interface are conserved. The perioperative burden is less and there has been freedom from aortic and valvular events. A prospective comparative study is planned

    Functional correlates of clinical phenotype and severity in recurrent SCN2A variants

    Get PDF
    In SCN2A-related disorders, there is an urgent demand to establish efficient methods for determining the gain- (GoF) or loss-of-function (LoF) character of variants, to identify suitable candidates for precision therapies. Here we classify clinical phenotypes of 179 individuals with 38 recurrent SCN2A variants as early-infantile or later-onset epilepsy, or intellectual disability/autism spectrum disorder (ID/ASD) and assess the functional impact of 13 variants using dynamic action potential clamp (DAPC) and voltage clamp. Results show that 36/38 variants are associated with only one phenotypic group (30 early-infantile, 5 later-onset, 1 ID/ASD). Unexpectedly, we revealed major differences in outcome severity between individuals with the same variant for 40% of early-infantile variants studied. DAPC was superior to voltage clamp in predicting the impact of mutations on neuronal excitability and confirmed GoF produces early-infantile phenotypes and LoF later-onset phenotypes. For one early-infantile variant, the co-expression of the alpha(1) and beta(2) subunits of the Na(v)1.2 channel was needed to unveil functional impact, confirming the prediction of 3D molecular modeling. Neither DAPC nor voltage clamp reliably predicted phenotypic severity of early-infantile variants. Genotype, phenotypic group and DAPC are accurate predictors of the biophysical impact of SCN2A variants, but other approaches are needed to predict severity. A comprehensive biophysical analysis of disease-associated mutations in the voltage-gated sodium channel gene, SCN2A, suggests that dynamic action potential clamp may be a better predictor than voltage clamp of how these mutations alter neuronal excitability, though other approaches are needed to predict severity

    Feasibility of trial procedures for a randomised controlled trial of a community based group exercise intervention for falls prevention for visually impaired older people: the VIOLET study

    Get PDF
    Background Visually impaired older people (VIOP) have a higher risk of falling than their sighted peers, and are likely to avoid physical activity. The aim was to adapt the existing Falls Management Exercise (FaME) programme for VIOP, delivered in the community, and to investigate the feasibility of conducting a definitive randomised controlled trial (RCT) of this adapted intervention. Methods Two-centre randomised mixed methods pilot trial and economic evaluation of the adapted group-based FaME programme for VIOP versus usual care. A one hour exercise programme ran weekly over 12 weeks at the study sites (Newcastle and Glasgow), delivered by third sector (voluntary and community) organisations. Participants were advised to exercise at home for an additional two hours over the week. Those randomised to the usual activities group received no intervention. Outcome measures were completed at baseline, 12 and 24 weeks. The potential primary outcome was the Short Form Falls Efficacy Scale – International (SFES-I). Participants’ adherence was assessed by reviewing attendance records and self-reported compliance to the home exercises. Adherence with the course content (fidelity) by instructors was assessed by a researcher. Adverse events were collected in a weekly phone call. Results Eighteen participants, drawn from community-living VIOP were screened; 68 met the inclusion criteria; 64 participants were randomised with 33 allocated to the intervention and 31 to the usual activities arm. 94% of participants provided data at the 12 week visit and 92% at 24 weeks. Adherence was high. The intervention was found to be safe with 76% attending nine or more classes. Median time for home exercise was 50 min per week. There was little or no evidence that fear of falling, balance and falls risk, physical activity, emotional, attitudinal or quality of life outcomes differed between trial arms at follow-up. Conclusions The intervention, FaME, was implemented successfully for VIOP and all progression criteria for a main trial were met. The lack of difference between groups on fear of falling was unsurprising given it was a pilot study but there may have been other contributory factors including suboptimal exercise dose and apparent low risk of falls in participants. These issues need addressing for a future trial
    corecore