5 research outputs found

    Hydrodynamics under Large-Scale Waves Breaking over a Barred Beach

    Get PDF
    This paper shows preliminary results of experiments obtained in a large-scale wave flume under monochromatic waves plunging over a fixed bar. Velocity measurements were conducted using acoustic and optical instruments at 22 cross-shore locations ranging from the final part of the shoaling zone up to the inner surf zone. The measurements included the bottom boundary layer and the lower part of the water column and provided insights on the mean velocity distribution, turbulent velocity fluctuations and Reynolds stresses. The mean velocity is generally seaward directed. Magnitudes of the mean velocity are small in the shoaling region and increase above the bar crest, especially in the higher part of the water column, while magnitudes in the boundary layer are relatively small. Fluid from the inner surf zone is transported offshore by the undertow and pushed up near the shoreward face of the bar, thus largely feeding the onshore mass transport above trough level. As a result a large recirculation cell located just above the trough of the bar is generated where currents and turbulent velocity fluctuations are strong

    Wave-Induced Oscillatory Flow Over a Sloping Rippled Bed

    No full text
    In this paper, the findings of an experimental analysis aimed at investigating the flow generated by waves propagating over a fixed rippled bed within a wave flume are reported. The bottom of the wave flume was constituted by horizontal part followed by a 1:10 sloping beach. Bedforms were generated in a previous campaign performed with loose sand, and then hardened by means of thin layers of concrete. The flow was acquired through a Vectrino Profiler along two different ripples, one located in the horizontal part of the bed and the second over the sloping beach. It was observed that, on the horizontal bed, near the bottom, ripple lee side triggered the appearance of an onshore directed steady streaming, whereas ripple stoss side gave rise to an offshore directed steady streaming. On the sloping bed, a strong return current appears at all positions, interacting with the rippled bottom. The turbulence is non-negligible within the investigated water depth, particularly when velocities were onshore directed, due to flow asymmetry. Turbulence caused a considerable flow stirring which, above a non-cohesive bed, could lift the sediment up in the water column and give rise to a strong sediment transport

    The flow over asymmetrical ripples: An experimental investigation on the morphodynamic behavior

    No full text
    This paper reports on an experimental campaign focused on the generation and evolution of small scale bedforms over a sloping sandy beach. The wave propagation over a sloping bed triggers a flow asymmetry that reflects on the bedform characteristics. Morphodynamic analyses on ripple evolution and migration led to observe that at the equilibrium the ripples have larger offshore flanks and are leant toward the beach. However migration velocity may be onshore or offshore directed. The equilibrium ripple characteristics seem to be well described by Nielsen (1981) ripple predictor
    corecore