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ABSTRACT 

This paper shows preliminary results of experiments obtained in a large-scale wave flume under monochromatic 

waves plunging over a fixed bar. Velocity measurements were conducted using acoustic and optical instruments at 22 

cross-shore locations ranging from the final part of the shoaling zone up to the inner surf zone. The measurements included 

the bottom boundary layer and the lower part of the water column and provided insights on the mean velocity distribution, 

turbulent velocity fluctuations and Reynolds stresses. The mean velocity is generally seaward directed. Magnitudes of 

the mean velocity are small in the shoaling region and increase above the bar crest, especially in the higher part of the 

water column, while magnitudes in the boundary layer are relatively small. Fluid from the inner surf zone is transported 

offshore by the undertow and pushed up near the shoreward face of the bar, thus largely feeding the onshore mass transport 

above trough level. As a result a large recirculation cell located just above the trough of the bar is generated where currents 

and turbulent velocity fluctuations are strong.   

KEWORDS: Breaking waves, surf zone, barred beach, turbulence, undertow. 

1 INTRODUCTION 

The coastal zone is one of the most dynamic areas of the earth, but it is also often highly populated and important  

for economic activities. It is particularly vulnerable to climate change effects such as sea level rise and increasing storm 

frequency which enhance coastal erosion. Hence, the availability of reliable morphodynamic models able to predict the 

impact of future climate change scenarios on the coast is crucial. The development of such models requires a full 

understanding of the hydrodynamic phenomena that occur in the coastal zone. In this regard, the surf zone is an area that 

is still subject to important deficiencies in terms of understanding for a number of reasons. In particular, wave breaking, 

which involves the sudden generation of vorticity and turbulence spanning over a wide range of spatial- and temporal 

scales, is still poorly understood. Furthermore, the strong unsteadiness and spatial variability of the flow field generated 

within the surf zone makes it generally difficult to collect experimental data with appropriate temporal and spatial 

resolutions. Despite these difficulties, several researchers have studied the hydrodynamic processes in the surf zone and 

the scientific results achieved until the 1980’s have been summarized by Peregrine (1983) and Battjes (1988).  

One of the first experiments involving detailed velocity measurements in the surf zone was carried out by Nadaoka 

et al. (1982) using a laser Doppler velocimeter (LDV). They observed no correlation between strong turbulence near the 

bed and the wave phase. This was explained using the assumption that turbulence generated by wave breaking was 

transported down to the bottom. Okayasu et al. (1986) obtained velocity measurements under plunging waves by using a 

hot film probe and an LDV. They deduced the existence of a large-scale vortex near the bed, just after plunging, and 

noted that the oscillating component of the velocity must contain an important rotational part.  

Nadaoka et al. (1989) reported on characteristic vortex structures referred to as ‘horizontal eddies’ and ‘obliquely 

descending eddies’ which, according to the authors, have a major role in the generation of the Reynolds stress and in 

entraining and re-suspending sediments. Ting and Kirby (1994; 1995) also provided insights on the subject through the 
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analysis of velocity and turbulence measurements obtained by means of LDV. They reported that turbulent kinetic energy 

is transported landward under a plunging breaker and dissipates within one wave cycle. In contrast, under spilling breakers 

turbulent kinetic energy is transported seaward by the mean flow and the dissipation rate is much slower. In the bore 

region of a plunging breaker the velocity is slightly higher under the crest compared to the trough, but the turbulence is 

much higher under the crest, so on average turbulence is transported onshore. The temporal variation of turbulence under 

spilling breakers is relatively small, but the offshore-directed velocities are of higher magnitude and longer duration, so 

the net transport is offshore directed. Ting and Kirby (1996) provided further insights into the hydrodynamics of spilling 

breakers identifying that turbulent transport processes in this case are similar in the outer and inner surf zones and 

turbulent diffusion is the primary mechanism for transport with advection mainly being important near the surface. 

From field measurements Ruessink (2010) showed that in the surf zone the Reynolds shear stress, which involves 

the correlation between the cross-shore and the vertical turbulent velocity fluctuations has the opposite sign to that of a 

boundary layer generated Reynolds stress. This result was explained by the presence of breaking induced vortices similar 

to those discussed by Nadaoka et al. (1989). Govender et al. (2002) highlighted that the region of highest turbulence 

production is located in the front part of the wave crest, close to the roller. Near the free surface turbulence has a clear 

phase dependence but this does not occur near the bed. Further contributions to the understanding of turbulence dynamics 

under breaking waves have been provided by numerous studies such as Cox and Kobayashi (2000), De Serio and Mossa 

(2006), Huang et al. (2009), and Sumer et al. (2013), which also highlighted the differences between spilling and plunging 

breakers in terms of turbulence dynamics. 

All the studies described above, except the field measurements of Ruessink (2010), were based on experiments 

involving breaking waves over a plane sloping beach. The case of a barred beach is more interesting since it frequently 

appears in nature, thus it provides an improved understanding of the hydrodynamics over real beaches.  

 Smith and Kraus (1991) showed that the macroscopic features of waves breaking over plane and barred beaches are 

substantially different. Scott et al. (2005) carried out experiments in a large-scale wave flume involving waves breaking 

on an artificial barred beach which reproduced one of the profiles detected during the DUCK1994 field experiments. In 

these experiments breaking wave turbulence was maximum at the bar crest. Onshore from the crest, turbulence was 

mainly confined to the free-surface. Yoon and Cox (2010) performed velocity measurements in a large-scale wave flume 

over an evolving sandy beach which developed a bar. The authors observed that for an equilibrium beach state, mean 

turbulent kinetic energy and dissipation at the bar trough were smaller than those in the surf zone. Govender et al. (2011) 

measured the velocity field produced by plunging waves over a barred beach by means of a video-based digital correlation 

velocimeter. After plunging near the bar crest the waves transformed into a spilling breaker with turbulence confined in 

the upper part of the water column. Compared to spilling breakers on a plane beach the turbulence transfer towards the 

bed was significantly reduced. 

Brinkkemper et al. (2016) studied the vertical structure of the turbulence in the surf and swash zones. In the surf 

zone they observed high turbulence levels during the phase at which the plunging jet hits the water surface. The process 

by which turbulence generated by wave breaking affects the boundary layer was studied by van der Zanden et al. (2016) 

who performed velocity measurements in the CIEM large-scale wave flume under plunging breaking waves propagating 

over a sandy, barred bed profile. In these experiments turbulence in the boundary layer showed peaks at two phases of 

the wave cycle: the first time when the wave plunges and the second time during the trough phase when turbulence is 

advected offshore by the wave and undertow velocities. Recently, van der A et al. (2017) discussed measurements carried 

out in the same wave flume and with the same experimental conditions considered in van der Zanden et al. (2016), except 

that the bed which was fixed by applying a layer of concrete. High values of the mean turbulent kinetic energy were 

observed on the onshore side of the bar where the jet penetrates into the water column. A strong upward advection of 

turbulent kinetic energy was also observed due to the undertow. Measurements during the same experiment were used in 

van der Zanden et al. (2018) to systematically explore the turbulent kinetic energy budget near the bed at 12 cross-shore 

locations. The analysis showed that production, dissipation, and advection were the primary terms driving the spatial and 

temporal variation in turbulent kinetic energy. Turbulence production rates near the bed are much higher in the breaking 

region than in the shoaling zone, due to the strongly non-uniform flow across the bar in combination with the presence of 

large-scale breaking-generated vortices. 

Despite the recent large-scale research that has added new insights on the surf zone hydrodynamics, wave breaking 

remains a poorly understood phenomenon as highlighted above, particularly the effects of breaking on the near bed 

hydrodynamics. Few wave conditions and a limited portion of the surf zone have been analyzed to date, thus it is largely 

unknown how the geometrical and hydrodynamic parameters affects production and transport of turbulence. The 

experiments described herein were designed to expand the database generated in previous experiments (van der Zanden 

et al. 2016; van der A et al. 2017; van der Zanden et al. 2018). This goal has been achieved by generating new wave 

conditions, increasing the bed roughness, increasing the number of measurement locations and using new high precision 

optical instruments. This present paper discusses the preliminary results of these experiments, carried out in the large-

scale CIEM wave flume, making use of the same bed profile used in van der A et al. (2017).  

2 EXPERIMENTAL SET-UP AND PROCEDURES 

The experiments were conducted in the CIEM large-scale wave flume at the Polytechnic University of Catalonia in 

Barcelona (Spain). The wave flume is 100 m long, 3 m wide and 5 m deep. The experiments were conducted at large 
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scale to generate a boundary layer flow with a Reynolds number that is similar to field conditions. As a result, scale 

effects on the bottom boundary layer flow, which are inherent to small-scale laboratory experiments, are minimized in 

the present study. The bed was constructed from concrete with a layer of gravel with D50=0.009 m glued onto the surface 

to increase and homogenize the roughness. The bed profile was generated in a previous experiment (van der A et al., 

2017) and consisted of an offshore slope with a breaker bar and trough (Figure 2a). The origin of the reference system 

lies on the still water level, at the stroke centre of the wave paddle. The cross-shore x-axis is positive in the onshore 

direction. The spanwise y-axis has the origin at the right-hand wall when facing the beach and it is directed towards the 

left-hand wall. Finally, the z-axis is vertical and upward directed. The velocity components along the x, y and z directions 

are denoted as u, v and w respectively. In all the experiments the water depth in the deeper part of the wave flume was 

2.65 m. The offshore slope is 1:12, it begins at x=34.2 m and ends near the bar crest at x=54.3 m. The height of the bar 

was 0.65 m from the trough to the crest. Onshore from the bar the profile slopes at 1:127 for 10 m and ends with a 1:7 

sloping beach approximately 8 m long.  All the results presented in this paper concern a monochromatic wave regime 

with period T=6 s and wave height H=0.55 m.  

Two laser Doppler anemometers (LDAs), two acoustic Doppler velocimeters (ADVs), one acoustic Doppler velocity 

profiler (ADVP, described fully in Hurther et al., 2011), two electromagnetic flow meters (EMCs) and a vectrino profiler 

(VP) were used for velocity measurements. The results here presented are based on measurements obtained using LDAs 

and ADVs. Data measured by means of ADVP have been used to replace some missing data from LDAs and ADVs. The 

LDAs measured the u and the w velocity components at a sampling frequency of 300 Hz on average. These rates varied 

dependent on the concentration of seeding particles and on the fluid velocity. The ADVs and the ADVP measured the 

three velocity components at a sampling frequency of 100 Hz and 25 Hz respectively. These instruments were deployed 

from a frame attached to a carriage placed on tracks at the top of the wave flume (see Figure 1). By moving the carriage 

along the horizontal direction and the frame along the vertical it was possible to obtain measurements at any positions 

along the profile. 

 

Figure 1. Photo of the mobile frame positioned above the bar crest including the measurement instruments. 

The flow velocity was measured at 22 cross-shore locations in the range x=49-64 m. For each cross-shore position, 

the frame was positioned at three different elevations, yielding velocity measurements by the LDAs and ADVs at 12 

elevations, in addition to the ADVP measurements which covered a 0.15 m profile above the bed with 1.5 mm vertical 

bin size resolution. Additional detailed measurements of the WBL flow were obtained at x=50.78 m. These velocities 

were measured with the LDA at 16 vertical positions, starting from 0.005 m up to 0.125 m from the top of the bed 

roughness and logarithmically spaced to capture the velocity distribution within the boundary layer. At each cross-shore 

position of the frame, waves were generated for approximately 45 minutes. Measurements were obtained for a duration 

of 12 min at each elevation, corresponding to approximately 120 waves.  

The water surface elevation was measured at 12 cross-shore locations by means of resistive wave gauges (RWG) 

and at 52 locations by means of acoustic wave gauges (AWG). In addition, 12 pressure transducers (PT) were used to 

determine the water surface elevation with linear wave theory. All these instruments measured the water surface elevation 

at a frequency of 40 Hz.  

Within the wave flume statistically steady conditions were generally established approximately 300 s after the  wave 

paddle started. This time was evaluated by analyzing the temporal developments of the water surface elevations and the 

velocity at different cross-shore and vertical positions. After discarding the first 300 s the remaining time series were used 

to compute the velocity and water surface statistics. In all the cases the statistics were computed on the basis of no less 

VP ADVP 
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than 100 waves. The ensemble average was determined as follows: 

 〈𝑢〉 =
1

𝑁
∑ 𝑢(𝑡 + 𝑛𝑇)𝑁−1

𝑛=0 , (1) 

where T is the wave period,  and N the number of waves included in the computation of the ensemble average. The wave 

period was evaluated from the water surface elevations measured with the resistive wave gauge located at x=50.85 m. 

The wave period T was computed as the arithmetic average of the periods of about 100 waves obtained by applying the 

zero up-crossing technique to the water surface elevation time series. In all the runs the standard deviation of T was 

approximately 6×10-3 s, thus confirming that the periods exhibits only a very small wave-to-wave variation, which allows 

using a constant value for T in the averaging procedure. Expressions analogous to (1) were used to compute the ensemble 

average of the other velocity components and for the free surface elevation. 

The non-equidistant sampled LDA measurements were phase-averaged, accounting for particle residence time to 

prevent velocity bias. The instantaneous velocity u can be written as follows: 

 𝑢 = 𝑢̅ + 𝑢̃ + 𝑢′, (2) 

where the bar denotes a time average, the tilde denotes the periodic fluctuating term of the ensemble average and the 

prime denotes the turbulent component (〈𝑢〉 = 𝑢̅ + 𝑢̃). 

3 RESULTS 

3.1 Water surface elevation 

Figure 2 shows the bed profile, wave height, the mean water surface elevation (set-up/set-down) and the root-mean-

square (rms) of the water surface elevations along the wave flume. The wave overturning which leads to breaking begins 

at x=53.50 m approximately (see ‘breaking point’ in figure 2a). At x=55.50 m the wave overturning is completed (see 

‘plunging point’ in figure 2a) and the plunging jet hits the free surface causing a localized transfer of momentum to the 

water column. As a consequence a new wave is generated which very rapidly becomes a stable roller that propagates 

towards the beach. 

The wave height is close to 0.55 m in the horizontal part of the wave flume but figure 2b shows that it oscillates 

along x. A rough estimate of amplitude and wavelength of these oscillations shows that they are approximately 0.12 m 

and 15 m respectively. These oscillations are likely due to wave reflection from the beach, which generates partial 

standing waves whose envelop of wave heights has a wavelength equal to half the wavelength of the incident progressive 

wave. This explanation is consistent with the estimated wavelength of the progressive waves, which is equal to 30 m 

approximately. However, the reflection does not have a significant effect on the processes that occur in the surf zone 

which are characterized by intense energy dissipation.  

 

Figure 2. Wave characteristics along the wave flume measured by resistive and acoustic wave gauges and pressure 

transducers. (a) Bed profile of the wave-flume; (b) wave height; (c) mean water level; (d) rms of the free surface elevation. ○ 

Resistive wave gauges; + acoustic wave gauges; ◊ pressure transducers. 
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The mean water level (Figure 2c) is approximately equal to zero up to x=40 m. Then a set-down begins which lasts 

up to x=55.50 m approximately. Although within the range x=40-55.50 m the data are rather scattered, it can be 

appreciated that the set-down is about -0.01 m on average. The mean water level 𝜂̅ starts to increase near x=55.5 m, which 

is the location where the plunging jet hits the water surface. This increase in mean water level is a result of the decrease 

of the onshore momentum flux due to the wave energy dissipation, which must be balanced by a positive cross-shore 

gradient in  𝜂̅. The rms of the free surface elevation (Figure 2d) is about 0.2 m in the horizontal part and exhibits 

oscillations analogous to those observed for the wave height. 

3.2 Time-averaged outer flow 

The velocities used for the spatial representation of the time-averaged cross-shore velocity 𝑢̅ and vertical velocity 𝑤̅ 

within the measurement region are those measured by LDA1, LDA2 and ADV2 which showed reasonable agreement 

among themselves. The data from ADV1 were discarded because, from the most offshore measurement location up to 

the bar trough, they showed a slight yet constant disagreement with those provided by the other instruments. This 

discrepancy can be attributed to the fact that the x position of ADV1 was about 0.17 m offshore with respect to that of the 

other instruments. Measurements carried out with ADVs are often affected by spurious data which appears in the form of 

spikes. When few, isolated spikes are present, the time series can be corrected. On the other hand when the spikes appear 

continuously during certain range of time the entire measurement must be rejected. The last condition occurred in some 

cases in the present experiments, due to significant air bubble presence and probe emergence. These spurious 

measurements as well as intervals of ADV probe emergence from the water could be well identified on the basis of a 

signal to noise ratio below 7 or a correlation value below 50%. Spurious data records due to isolated spikes were removed 

using a despiking routine based on phase-space and replaced through interpolation using cubic polynomial. Spurious 

velocity measurements above wave trough level were detected on the basis of signal to noise ratio and correlation and set 

to 0. Thus, mean velocities above to the trough level were computed over the full wave period. 

In the two-dimensional plots presented in the figures below, nine measurements points distributed over the depth 

were used at each of the 22 cross-shore positions. These points were obtained by measuring the velocity at three different 

positions by means of LDA1, LDA2 and ADV2, with three different elevations of the frame at each cross-shore location. 

From the 198 measurement points, 10 data records were discarded because of instrument malfunctioning or poor data 

quality. To enable a constant number of points to be plotted along each vertical, these missing recordings were replaced 

by ADVP data or by means of interpolation from adjacent data. Replacing data by interpolation did not alter the main 

trend of the velocity distribution, since it was used only where the velocity was not subject to rapid changes, moreover 

the missing data records were few in comparison to the total number of recordings. 

Figures 3 and 4 show the spatial distribution of the mean velocity in the x- and z-direction, respectively. At the most 

offshore shoaling zone locations, the mean velocity is small and almost constant with depth. At x=49 m for example, the 

velocity shows only small variations along z and takes values of -0.05 ms-1 approximately. This velocity is seaward 

directed in order to balance the landward mass transport near the water surface induced by the progressive wave. This 

onshore flux contribution is present in Figure 3 only at a few locations as measurements were mainly obtained in the 

lower part of the water column. The negative velocities increase further shorewards reaching values of -0.20 ms-1 around 

the bar crest at x=53.5 m, where the overturning process begins. The mean vertical velocity (shown in Figure 4) is rather 

small at these locations. From this point up to x=57.5 m the mean horizontal velocity slightly decreases in magnitude. At 

x=55.5 m the plunging jet hits the free surface and subsequently penetrates obliquely into the mass of water, transferring 

a large amount of momentum. Figure 4 shows that this momentum transfer gives rise to large negative mean velocities 

which reach the bed at x=58-60 m. The largest mean velocities in Figure 3 occur where the mean vertical velocity vanishes 

(Figure 4). This shows that in this region the offshore current grows in magnitude as long as there is a downward flux 

that feeds it. The upward flux close to the shoreward face of the bar balances this downward flux plus the undertow 

coming from the inner surf zone. Thus, it contributes to the establishment of a large scale circulation which allows 

landward mass transport to take place without violating mass conservation. Part of the fluid however remains trapped in 

a recirculation cell just above the bar trough. The maximum of both the mean cross-shore and vertical velocities are 

attained within this cell and are approximately 0.40 and 0.15 ms-1 respectively. In the inner surf zone (x>60 m) the offshore 

velocity is mostly constant and approximately 0.2 ms-1 even close to the bed, indicating that here the undertow has a 

strong impact on the boundary layer. In contrast, in the inner surf zone the mean vertical velocity is small (Figure 4), with 

magnitudes comparable to those in the shoaling region.  

Figure 3 shows that over the onshore face of the bar (x=55.5 to 57.0 m) a small near-bed area is present where the 

mean velocity is positive while the velocity is negative at adjacent locations. The dynamic mechanism responsible for 

this positive mean velocity is not clear yet. From a kinematical point of view this positive velocity is due to the negative 

vertical velocity occurring offshore which extends up to the onshore face of the bar where, due to the inclination of the 

bottom, a positive u velocity component is generated. Continuity is satisfied since the upward current that occurs at x=57 

m which brings the water towards the surface. 

 

 

 



 

 

6 

In Figure 5 the time-averaged rms of the cross-shore velocity fluctuations 𝑢𝑟𝑚𝑠
′̅̅ ̅̅ ̅̅  = 〈𝑢′2〉1/2̅̅ ̅̅ ̅̅ ̅̅ ̅̅  is shown. In the shoaling 

region (x=49 m) 𝑢𝑟𝑚𝑠
′̅̅ ̅̅ ̅̅  is ≈0.02 ms-1 and it is rather constant over depth, except close to the bed where the contribution 

from bed generated turbulence is important. On the bar, turbulence intensity increases up to 0.055 ms-1 on average. Here 

𝑢𝑟𝑚𝑠
′̅̅ ̅̅ ̅̅  attains the minimum in the middle of the water column at z=-0.6 m approximately. This is due to the coexistence of 

two main sources of turbulence: the boundary layer and the free surface. The highest measured values of  𝑢𝑟𝑚𝑠
′̅̅ ̅̅ ̅̅   is ≈0.25 

ms-1 and occurs at the highest measurement point at x=58.50 m, because of the direct impact of the plunging jet. The rms 

of 𝑢′  is also large near the bed at x=57.5 m where it takes values of ≈0.15 ms-1, but here turbulent fluctuations are mainly 

generated by boundary layer processes rather than the direct effect of wave breaking.  

 

          

Figure 3. Time-averaged cross-shore velocity 𝒖̅. 

          

Figure 4. Time-averaged vertical velocity 𝒘̅. 

The time-averaged rms of the vertical velocity fluctuations 𝑤𝑟𝑚𝑠
′̅̅ ̅̅ ̅̅  = 〈𝑤′2〉1/2̅̅ ̅̅ ̅̅ ̅̅ ̅̅ , shown in Figure 6, is generally only 

slightly smaller than 𝑢𝑟𝑚𝑠
′̅̅ ̅̅ ̅̅  . For example, in the inner surf zone the maximum measured values of 𝑢𝑟𝑚𝑠

′̅̅ ̅̅ ̅̅   and  𝑤𝑟𝑚𝑠
′̅̅ ̅̅ ̅̅   are 

0.15 and 0.12 ms-1 approximately. This result implies a certain degree of turbulence isotropy which certainly does not 

occur in the boundary layer. Similar to 𝑢𝑟𝑚𝑠
′̅̅ ̅̅ ̅̅ ,  𝑤𝑟𝑚𝑠

′̅̅ ̅̅ ̅̅  is very large above the trough of the bar with values of 0.22 ms-1.  

Another similar characteristic is the trend of the vertical profile on the bar crest which show a minimum close to z=-

0.6 m. The main difference between  𝑢𝑟𝑚𝑠
′̅̅ ̅̅ ̅̅  and 𝑤𝑟𝑚𝑠

′̅̅ ̅̅ ̅̅  occurs near the bed. Indeed, the high values of 𝑢𝑟𝑚𝑠
′̅̅ ̅̅ ̅̅   detected near 

the bed at x=57-58 m in Figure 5 are not observed for 𝑤𝑟𝑚𝑠
′̅̅ ̅̅ ̅̅   in Figure 6 because of the near bed turbulence anisotropy. 
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Figure 5. Time-averaged root mean square cross-shore turbulent velocity. 

         

Figure 6. Time-averaged root mean square vertical turbulent velocity. 

3.3 Boundary layer flow 

The boundary layer flow was measured by means of LDA and ADVP, however only at x=50.78 m detailed 

measurements within the boundary layer carried out by means of LDA are available. This section is devoted to the analysis 

of the boundary layer measurements by LDA at x=50.78 m. 

Location x=50.78 m is in the shoaling region, 4 m offshore away from the bar crest, thus at this location only an 

indirect effect of the breaking processes that occur further onshore may be detected. Figure 7a shows the time 

development of the free stream velocity measured at 𝑧′=0.125 m (𝑧′ is the distance from the top of the bed roughness). It 

can be observed that the free stream velocity has a large velocity skewness and acceleration asymmetry. The skewness 

Sk and the asymmetry Asy measure the departure of the free stream velocity from a sinusoidal function and are given as 

follows: 

 𝑆𝑘 =
𝑢3̅̅ ̅̅

𝑢2̅̅ ̅̅ 3/2 ,       𝐴𝑠𝑦 =
𝑢̇3̅̅ ̅̅

 𝑢̇2̅̅ ̅̅ 3/2, (2) 

where a dot denotes a time derivative. Skewness and asymmetry of the free stream velocity shown in figure 6a are equal 

to 0.93 and 1.45 respectively, due to the strong prevalence of positive velocities and accelerations compared to the 

negative ones. The Reynolds number 𝑅𝛿 of the boundary layer based on the maximum of the free stream velocity and on 

the thickness of the Stokes layer 𝛿 = √𝜈𝑇/𝜋  (ν is the kinematic viscosity) is equal to 1000 approximately. It decreases 

to 800 approximately if the Reynolds number is evaluated by means of the arithmetic average of the positive and negative 

velocity peaks. Considering that the roughness is made up by gravel with 𝐷50=9×10-3 m, in all the cases the flow falls in 

the rough turbulent regime according to the classification of Jonsson (1980). 

Figure 7 shows the free-stream velocity (plot a) and the vertical distributions of the time-averaged horizontal velocity 

at 7 stages of the wave cycle (plot b). The variability in the vertical profiles appears to be due to offsets in synchronization 

between the different acquisitions. Figure 7 shows that at t=0 the velocity rapidly increases and attains the maximum at 
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t=0.5 s. At this phase there is a well-defined overshoot in the velocity profile at 𝑧′= 0.02 m, probably enhanced by the 

convergence effect of the bed geometry. The Reynolds stress (Figure 8), which was positive everywhere at t=0 s, becomes 

negative near the bed at t=0.5 s and remains positive far from the bed. The positive Reynolds stress is due to the negative 

velocity gradient that occurs above the point of the velocity maximum while the negative part is due to the positive 

velocity gradient near the bed (𝑧′ < 0.02 m).  After t = 0.5 s the velocity decreases but at t=1 s the Reynolds stress is larger 

than at t=0.5 s. At t=1.9 s the velocity is small and the Reynolds stress is reduced substantially near the bed. An increase 

of the velocity in the negative direction (t=2.5 s) causes an increase of the Reynolds stress which finally becomes positive 

at t=4.5 s when the maximum negative velocity is attained. Because of skewness and asymmetry, and because of the 

undertow, the mean velocity and the Reynolds stress do not vanish in the boundary layer. The mean velocity is negative 

at 𝑧′=0.12 m where it reaches its outer flow value of -0.05 ms-1 approximately. The mean Reynolds stress has a more 

intricate trend: below 𝑧′=0.007 m it is positive, then it becomes negative up to 0.025 m, at higher elevations it becomes 

positive again and finally tends asymptotically to zero far from the bed. 

 

Figure 7. (a) Free stream velocity; (b) velocity profiles. x=50.78 m. 

 

Figure 8. Reynolds stress at x=50.78 m. For clarity, the data of each phase are shifted forward by 10-3 m2/s2 with respect to 

those of the previous phase. 

 

Figure 9. Turbulent intensities at x=50.78 m. (a) Cross-shore turbulent intensity; (b) Vertical turbulent intensity. The data of 

each phase are shifted forward by 0.1 ms-1 compared to those of the previous phase. 

Figure 9 shows the rms of the cross-shore and vertical turbulent velocity fluctuations in the boundary layer. First of 

all it can be observed that in the boundary layer the cross-shore turbulent intensity is larger than the vertical turbulent 

intensity at all the phases. The turbulent intensities increase during the accelerating phase and become large at the peak 

of the free stream velocity (t=0.5 s). However, as already observed for the Reynolds stress, the turbulent intensities 

continue to increase during the decelerating phase and at t=1 s they attain values larger than those at the peak of the free 

stream velocity. Turbulent intensities during the onshore flow half-cycle are higher than those of the offshore flow half-

cycle because of the flow skewness and asymmetry. The increase in turbulent intensity during the decelerating phase is 

analysed in Figure 10 which shows the temporal development of  𝑢𝑟𝑚𝑠
′  at three different elevations, with the free stream 

velocity given as reference. 
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  Figure 10. Time variation of 𝒖𝒓𝒎𝒔
′  at three different elevations. The free stream velocity 𝒖𝟎 is shown as reference. x=50.78 m. 

It can be seen that very close to the bed the first peak of 𝑢𝑟𝑚𝑠
′  (red line) has a small delay with respect to the peak of 

𝑢0. It can be observed that because of this delay 𝑢𝑟𝑚𝑠
′  at t=0.5 s is slightly smaller than at t=1 s. The difference between 

the two phases increases at higher elevation. Indeed at 𝑧′=7×10-3 m (blue line) the delay of the first peak increases and  

𝑢𝑟𝑚𝑠
′  at t=0.5 s further decreases significantly. Such a forward shift of the phase of 𝑢𝑟𝑚𝑠

′  with 𝑧′ is mainly  due to turbulent 

diffusion and it has been observed also in numerical simulations (Scandura et al. 2016). At higher distance from the bed 

(𝑧′=37×10-3 m) only one main peak is detected. 

4 CONCLUSIONS 

The flow velocity was measured with high spatial and temporal resolution under monochromatic waves plunging on 

a fixed barred beach in a large-scale wave flume. In the shoaling region the undertow velocity is small, while its magnitude 

increases on the bar crest where a velocity of -0.2 ms-1 is detected approximately 0.32 m below the still water level. On 

the bar crest the mean vertical velocity is small and does not exceed values of 10-2 ms-1. Shoreward from the bar crest the 

mean horizontal offshore directed velocity slightly decreases in magnitude up to the trough of the bar where it suddenly 

increases in the lower part of the water column. At the same location, the mean vertical velocity component increases to 

allow the strong offshore fluid flux to be directed upward. This fluid flowing offshore comes mainly from the inner surf 

zone and when it is pushed up, near the shoreward face of the bar, it feeds the onshore mass transport that in turn feeds 

the undertow current. Part of the fluid however remains trapped in a recirculation cell located above the trough of the bar. 

Within this flow recirculation zone the mean velocities attain the largest values. In magnitude the maximum mean 

velocities are 0.4 ms-1 for the horizontal component and 0.15 ms-1 for the vertical. Where the plunged wave propagates in 

the form of a bore, the mean velocity is mostly constant along the cross-shore x direction and takes values of 

approximately 0.2 ms-1 until near to the bed, thus the boundary layer is strongly affected by the undertow. 

The time-averaged cross-shore and vertical turbulent intensities are large within the recirculation cell above the bar 

trough, where they take maximum values of 0.25 and 0.22 ms-1 respectively. Generally, the two turbulent intensities differ 

only slightly; in the inner surf zone, for example, maximum measured values of  𝑢𝑟𝑚𝑠
′̅̅ ̅̅ ̅̅  and  𝑤𝑟𝑚𝑠

′̅̅ ̅̅ ̅̅  are approximately 0.15 

and 0.12 ms-1 respectively. 

Specific results concerning the boundary layer have been reported for a location corresponding to the shoaling region 

where detailed LDA measurements are available. The free stream velocity has a large velocity skewness and acceleration 

asymmetry. These characteristics combined with the flow convergence effect due to the bed slope result in a much more 

prominent overshoot in the onshore half-cycle velocity profiles compared to that in the offshore half-cycle. The Reynolds 

stress shows trends that are expected based on the velocity profiles: it is negative when the velocity gradient is positive 

and vice-versa, and it is very small outside the wave boundary layer. Near the bed, the Reynolds stress and the rms of the 

velocity fluctuations increase during the first part of the decelerating phase. The turbulence intensities show two peaks 

during the wave cycle, characterized by a depth-dependent time lag with respect to the free-stream velocity due to 

turbulent diffusion. These features of the boundary layer dynamics will be the subject of future work based on data 

acquired by the ADVP.  
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