474 research outputs found

    Minimally Invasive Urological Interventions in Outpatient Clinic on the Example of Prostate Biopsy

    Full text link
    One of the main directions of improving medical care was the introduction of inpatient forms of medical care for patients who do not require round-the-clock supervision.Aim of the research: to prove the effectiveness and economic feasibility of minimally invasive procedures in outpatient conditions.Materials and methods. The study included 3524 patients in the period from 2010 to 2017, who underwent transrectal prostate biopsy on the basis of the Department of urology of polyclinic No. 195 of the Western district of Moscow. For comparison, the patients were taken, who underwent a biopsy of the prostate gland at the base hospital No. 31, No. 51, No. 17.Results. The average number of biopsies performed in hospital No. 31, No. 51 and No. 17 for the year amounted to 344 biopsies, and the average detectability of prostate cancer was 142 (41.3 %). The average number of biopsies per year in the urology department of the branch number 2 GP No. 195 amounted to 440.5, and the average detectability of prostate cancer – 152.8 (34.7 %). Thus, with comparable inpatient detection of prostate cancer in one large outpatient urology center, an average of 28 % more biopsies are performed (440.5 versus 344) than in 3 hospitals over a comparable period of time.Conclusions. Inpatient technologies can reduce the burden on hospitals. The development of hospital-replacing forms is determined by the need of the population and for efficient use of financial and technical resources of health care

    Negative conductivity and anomalous screening in two-dimensional electron systems subjected to microwave radiation

    Full text link
    A 2D electron system in a quantized magnetic field can be driven by microwave radiation into a non-equilibrium state with strong magnetooscillations of the dissipative conductivity. We demonstrate that in such system a negative conductivity can coexist with a positive diffusion coefficient. In a finite system, solution of coupled electrostatic and linear transport problems shows that the diffusion can stabilize a state with negative conductivity. Specifically, this happens when the system size is smaller than the absolute value of the non-equilibrium screening length that diverges at the point where the conductivity changes sign. We predict that a negative resistance can be measured in such a state. Further, for a non-zero difference between the work functions of two contacts, we explore the distribution of the electrostatic potential and of the electron density in the sample. We show that in the diffusion-stabilized regime of negative conductivity the system splits into two regions with opposite directions of electric field. This effect is a precursor of the domain structure that has been predicted to emerge spontaneously in the microwave-induced zero-resistance states.Comment: 8 pages, 4 figure

    Symmetric photon-photon coupling by atoms with Zeeman-split sublevels

    Full text link
    We propose a simple scheme for highly efficient nonlinear interaction between two weak optical fields. The scheme is based on the attainment of electromagnetically induced transparency simultaneously for both fields via transitions between magnetically split F=1 atomic sublevels, in the presence of two driving fields. Thereby, equal slow group velocities and symmetric cross-coupling of the weak fields over long distances are achieved. By simply tuning the fields, this scheme can either yield giant cross-phase modulation or ultrasensitive two-photon switching.Comment: Modified scheme, 4 pages, 1 figur

    Giant nonlinearity and entanglement of single photons in photonic bandgap structures

    Full text link
    Giantly enhanced cross-phase modulation with suppressed spectral broadening is predicted between optically-induced dark-state polaritons whose propagation is strongly affected by photonic bandgaps of spatially periodic media with multilevel dopants. This mechanism is shown to be capable of fully entangling two single-photon pulses with high fidelity.Comment: 7 pages, 1 figur

    Towards deterministic optical quantum computation with coherently driven atomic ensembles

    Full text link
    Scalable and efficient quantum computation with photonic qubits requires (i) deterministic sources of single-photons, (ii) giant nonlinearities capable of entangling pairs of photons, and (iii) reliable single-photon detectors. In addition, an optical quantum computer would need a robust reversible photon storage devise. Here we discuss several related techniques, based on the coherent manipulation of atomic ensembles in the regime of electromagnetically induced transparency, that are capable of implementing all of the above prerequisites for deterministic optical quantum computation with single photons.Comment: 11 pages, 7 figure

    Dynamical Casimir Effect in a one-dimensional uniformly contracting cavity

    Full text link
    We consider particle creation (the Dynamical Casimir effect) in a uniformly contracting ideal one-dimensional cavity non-perturbatively. The exact expression for the energy spectrum of created particles is obtained and its dependence on parameters of the problem is discussed. Unexpectedly, the number of created particles depends on the duration of the cavity contracting non-monotonously. This is explained by quantum interference of the events of particle creation which are taking place only at the moments of acceleration and deceleration of a boundary, while stable particle states exist (and thus no particles are created) at the time of contracting.Comment: 13 pages, 4 figure

    Linear atomic quantum coupler

    Full text link
    In this paper, we develop the notion of the linear atomic quantum coupler. This device consists of two modes propagating into two waveguides, each of them includes a localized and/or a trapped atom. These waveguides are placed close enough to allow exchanging energy between them via evanescent waves. Each mode interacts with the atom in the same waveguide in the standard way, i.e. as the Jaynes-Cummings model (JCM), and with the atom-mode in the second waveguide via evanescent wave. We present the Hamiltonian for the system and deduce the exact form for the wavefunction. We investigate the atomic inversions and the second-order correlation function. In contrast to the conventional linear coupler, the atomic quantum coupler is able to generate nonclassical effects. The atomic inversions can exhibit long revival-collapse phenomenon as well as subsidiary revivals based on the competition among the switching mechanisms in the system. Finally, under certain conditions, the system can yield the results of the two-mode JCM.Comment: 14 pages, 3 figures; comments are most welcom

    Geometric phases of mesoscopic spin in Bose-Einstein condensates

    Full text link
    We propose a possible scheme for generating spin-J geometric phases using a coupled two-mode Bose-Einstein condensate (BEC). First we show how to observe the standard Berry phase using Raman coupling between two hyperfine states of the BEC. We find that the presence of intrinsic interatomic collisions creates degeneracy in energy that allows implementation of the non-Abelian geometric phases as well. The evolutions produced can be used to produce interference between different atomic species with high numbers of atoms or to fine control the difference in atoms between the two species. Finally, we show that errors in the standard Berry phase due to elastic collisions may be corrected by controlling inelastic collisions between atoms.Comment: 6 pages, 2 figure

    Toroidal optical dipole traps for atomic Bose-Einstein condensates using Laguerre-Gaussian beams

    Full text link
    We theoretically investigate the use of red-detuned Laguerre-Gaussian (LG) laser beams of varying azimuthal mode index for producing toroidal optical dipole traps in two-dimensional atomic Bose-Einstein condensates. Higher-order LG beams provide deeper potential wells and tighter confinement for a fixed toroid radius and laser power. Numerical simulations of the loading of the toroidal trap from a variety of initial conditions is also given.Comment: 12 pages, 5 figures, submitted to Phys. Rev.

    The Updated Zwicky Catalog (UZC)

    Get PDF
    The Zwicky Catalog of galaxies (ZC), with m_Zw<=15.5mag, has been the basis for the Center for Astrophysics (CfA) redshift surveys. To date, analyses of the ZC and redshift surveys based on it have relied on heterogeneous sets of galaxy coordinates and redshifts. Here we correct some of the inadequacies of previous catalogs by providing: (1) coordinates with <~2 arcsec errors for all of the Nuzc catalog galaxies, (2) homogeneously estimated redshifts for the majority (98%) of the data taken at the CfA (14,632 spectra), and (3) an estimate of the remaining "blunder" rate for both the CfA redshifts and for those compiled from the literature. For the reanalyzed CfA data we include a calibrated, uniformly determined error and an indication of the presence of emission lines in each spectrum. We provide redshifts for 7,257 galaxies in the CfA2 redshift survey not previously published; for another 5,625 CfA redshifts we list the remeasured or uniformly re-reduced value. Among our new measurements, Nmul are members of UZC "multiplets" associated with the original Zwicky catalog position in the coordinate range where the catalog is 98% complete. These multiplets provide new candidates for examination of tidal interactions among galaxies. All of the new redshifts correspond to UZC galaxies with properties recorded in the CfA redshift compilation known as ZCAT. About 1,000 of our new measurements were motivated either by inadequate signal-to-noise in the original spectrum or by an ambiguous identification of the galaxy associated with a ZCAT redshift. The redshift catalog we include here is ~96% complete to m_Zw<=15.5, and ~98% complete (12,925 galaxies out of a total of 13,150) for the RA(1950) ranges [20h--4h] and [8h--17h] and DEC(1950) range [-2.5d--50d]. (abridged)Comment: 34 pp, 7 figs, PASP 1999, 111, 43
    • …
    corecore