316 research outputs found

    Partially autoionizing states of atomic oxygen

    Get PDF
    The Rydberg states 3d' (3Po)2,1,0 and 3s'' (3Po)2,1,0 and the inner shell transition 2s 2p5 (3Po)2,1,0, which are forbidden to autoionize on the basis of LS coupling, were observed in emission spectroscopy and in autoionization spectra produced in the photoelectron spectrum of atomic oxygen

    Exact Markovian kinetic equation for a quantum Brownian oscillator

    Full text link
    We derive an exact Markovian kinetic equation for an oscillator linearly coupled to a heat bath, describing quantum Brownian motion. Our work is based on the subdynamics formulation developed by Prigogine and collaborators. The space of distribution functions is decomposed into independent subspaces that remain invariant under Liouville dynamics. For integrable systems in Poincar\'e's sense the invariant subspaces follow the dynamics of uncoupled, renormalized particles. In contrast for non-integrable systems, the invariant subspaces follow a dynamics with broken-time symmetry, involving generalized functions. This result indicates that irreversibility and stochasticity are exact properties of dynamics in generalized function spaces. We comment on the relation between our Markovian kinetic equation and the Hu-Paz-Zhang equation.Comment: A few typos in the published version are correcte

    Complex collective states in a one-dimensional two-atom system

    Full text link
    We consider a pair of identical two-level atoms interacting with a scalar field in one dimension, separated by a distance x21x_{21}. We restrict our attention to states where one atom is excited and the other is in the ground state, in symmetric or anti-symmetric combinations. We obtain exact collective decaying states, belonging to a complex spectral representation of the Hamiltonian. The imaginary parts of the eigenvalues give the decay rates, and the real parts give the average energy of the collective states. In one dimension there is strong interference between the fields emitted by the atoms, leading to long-range cooperative effects. The decay rates and the energy oscillate with the distance x21x_{21}. Depending on x21x_{21}, the decay rates will either decrease, vanish or increase as compared with the one-atom decay rate. We have sub- and super-radiance at periodic intervals. Our model may be used to study two-cavity electron wave-guides. The vanishing of the collective decay rates then suggests the possibility of obtaining stable configurations, where an electron is trapped inside the two cavities.Comment: 14 pages, 14 figures, submitted to Phys. Rev.

    Quantum Zeno subspaces

    Full text link
    The quantum Zeno effect is recast in terms of an adiabatic theorem when the measurement is described as the dynamical coupling to another quantum system that plays the role of apparatus. A few significant examples are proposed and their practical relevance discussed. We also focus on decoherence-free subspaces.Comment: 5 pages, 1 figure, to be published in Phys. Rev. Let

    Real measurements and Quantum Zeno effect

    Get PDF
    In 1977, Mishra and Sudarshan showed that an unstable particle would never be found decayed while it was continuously observed. They called this effect the quantum Zeno effect (or paradox). Later it was realized that the frequent measurements could also accelerate the decay (quantum anti-Zeno effect). In this paper we investigate the quantum Zeno effect using the definite model of the measurement. We take into account the finite duration and the finite accuracy of the measurement. A general equation for the jump probability during the measurement is derived. We find that the measurements can cause inhibition (quantum Zeno effect) or acceleration (quantum anti-Zeno effect) of the evolution, depending on the strength of the interaction with the measuring device and on the properties of the system. However, the evolution cannot be fully stopped.Comment: 3 figure

    On the Thermal Symmetry of the Markovian Master Equation

    Full text link
    The quantum Markovian master equation of the reduced dynamics of a harmonic oscillator coupled to a thermal reservoir is shown to possess thermal symmetry. This symmetry is revealed by a Bogoliubov transformation that can be represented by a hyperbolic rotation acting on the Liouville space of the reduced dynamics. The Liouville space is obtained as an extension of the Hilbert space through the introduction of tilde variables used in the thermofield dynamics formalism. The angle of rotation depends on the temperature of the reservoir, as well as the value of Planck's constant. This symmetry relates the thermal states of the system at any two temperatures. This includes absolute zero, at which purely quantum effects are revealed. The Caldeira-Leggett equation and the classical Fokker-Planck equation also possess thermal symmetry. We compare the thermal symmetry obtained from the Bogoliubov transformation in related fields and discuss the effects of the symmetry on the shape of a Gaussian wave packet.Comment: Eqs.(64a), (65a)-(68) are correcte

    Assessing hydrosystem influence on delayed mortality of Snake River stream-type Chinook salmon.

    Get PDF
    Abstract.-Snake River stream-type Chinook salmon Oncorhynchus tshawytscha exhibited substantial delayed mortality despite recent improvements in oceanic and climatic conditions. These salmon declined sharply with the completion of the Columbia River hydrosystem in addition to other anthropogenic impacts and changes in oceanic conditions. Previous analytical approaches have compared management options for halting the population decline. The predicted benefits of these options on salmon recovery hinged on whether the source of the mortality that takes place in the estuary and during early ocean residence is related to earlier hydrosystem experience during downstream migration (i.e., delayed hydrosystem mortality). We analyzed the spatial and temporal patterns of mortality for Chinook salmon populations to determine whether delayed mortality for the Snake River populations decreased during the recent period of favorable oceanic and climatic conditions. We found that Snake River stream-type Chinook salmon populations continued to exhibit survival patterns similar to those of their downriver counterparts but survived only one-fourth to one-third as well. The hypothesis that delayed mortality decreased and became negligible with more favorable oceanic conditions appears inconsistent with the patterns we observed for the common year effect and our estimates of delayed mortality of in-river migrants. A plausible explanation for this persistent pattern of delayed mortality for Snake River populations is that it is related to the construction and operation of the hydrosystem

    Stochastic Dynamical Structure (SDS) of Nonequilibrium Processes in the Absence of Detailed Balance. III: potential function in local stochastic dynamics and in steady state of Boltzmann-Gibbs type distribution function

    Full text link
    From a logic point of view this is the third in the series to solve the problem of absence of detailed balance. This paper will be denoted as SDS III. The existence of a dynamical potential with both local and global meanings in general nonequilibrium processes has been controversial. Following an earlier explicit construction by one of us (Ao, J. Phys. {\bf A37}, L25 '04, arXiv:0803.4356, referred to as SDS II), in the present paper we show rigorously its existence for a generic class of situations in physical and biological sciences. The local dynamical meaning of this potential function is demonstrated via a special stochastic differential equation and its global steady-state meaning via a novel and explicit form of Fokker-Planck equation, the zero mass limit. We also give a procedure to obtain the special stochastic differential equation for any given Fokker-Planck equation. No detailed balance condition is required in our demonstration. For the first time we obtain here a formula to describe the noise induced shift in drift force comparing to the steady state distribution, a phenomenon extensively observed in numerical studies. The comparison to two well known stochastic integration methods, Ito and Stratonovich, are made ready. Such comparison was made elsewhere (Ao, Phys. Life Rev. {\bf 2} (2005) 117. q-bio/0605020).Comment: latex. 13 page

    The lattice stiffening transition in UO2 single crystals

    Get PDF
    The effective Debye temperatures (θDE) of the surface region of UO2 single crystals, prepared by the hydrothermal synthesis technique, were obtained from temperature-dependent x-ray photoemission in the temperature range of 300 K–623 K. A lattice stiffening transition, characterized by different regions of different effective Debye temperature, 500 ± 59 K below 475 K and 165 ± 21 K above 475 K is identified. A comparison of the temperature dependence of the effective UO2 Debye temperature, with the changes in the lattice expansion coefficient for UO2, support strong lattice-phonon interaction arising from the Jahn–Teller distortion
    • …
    corecore