1,423 research outputs found

    Ascending non-Newtonian long drops in vertical tubes

    Get PDF
    We report on theoretical and experimental studies describing the buoyancy-driven ascent of a Taylor long drop in a circular vertical pipe where the descending uid is Newtonian, and the ascending uid is non-Newtonian yield-shear-thinning and described by the threeparameter Herschel-Bulkley model, including the Ostwald-deWaele (OdW) model as a special case for zero yield. Results for the Ellis model are included to provide a more realistic description of purely shear-thinning behaviour. In all cases, lubrication theory allows obtaining the velocity pro les and the corresponding integral variables in closed form, for lock-exchange ow with a zero net ow rate. The energy balance allows deriving the asymptotic radius of the inner current, corresponding to a stable node of the di erential equation describing the time evolution of the core radius. We carried out a series of experiments measuring the rheological properties of the uids, the speed and the radius of the ascending long drop. For some tests, we measured the velocity pro le with Ultrasound velocimetry technique. The measured radius of the ascending current compares fairly well with the asymptotic radius as derived through the energy balance, and the measured ascent speed shows a good agreement with the theoretical model. The measured velocity pro les also agree with their theoretical counterparts. We have also developed dynamic similarity conditions to establish whether laboratory physical models, limited by availability of real uids with de ned rheological characteristics, can be representative of real phenomena on a large scale, such as exchanges in volcanic conduits. The Appendix contains scaling rules for the approximated dynamic similarity of the physical process analysed; these rules serve as a guide for the design of experiments reproducing real phenomena

    Experimental verification of theoretical approaches for radial gravity currents draining from an edge

    Get PDF
    We present an experimental study of inertial gravity currents (GCs) propagating in a cylindrical wedge under different drainage directions (inward/outward), lock-release (full/partial gate width) and geometry (annulus/full cylinder). We investigate the following combinations representative of operational conditions for dam-break flows: (i) inward drainage, annular reservoir, full gate; (ii) outward drainage, full reservoir, full gate; and (iii) outward drainage, full reservoir, partial gate. A single-layer shallow-water (SW) model is used for modelling the first two cases, while a box model interprets the third case; the results of these approximations are referred to as “theoretical”. We performed a first series of experiments with water as ambient fluid and brine as intruding fluid, measuring the time evolution of the volume in the reservoir and the velocity profiles in several sections; in a second series, air was the ambient and water was the intruding fluid. Careful measurements, accompanied by comparisons with the theoretical predictions, were performed for the behaviour of the interface, radial velocity and, most important, the volume decay V(t) / V(0). In general, there is good agreement: the theoretical volume decay is more rapid than the measured one, but the discrepancies are a few percent and the agreement improves as the Reynolds number increases. Velocity measurements show a trend correctly reproduced by the SW model, although often a delay is observed and an over- or under-estimation of the peak values. Some experiments were conducted to verify the role of inconsistencies between experimental set-up and model assumptions, considering, for example, the presence or absence of a top lid, wedge angle much less than 2 π, suppression of the viscous corner at the centre, reduction of disturbances in the dynamics of the ambient fluid: all these effects resulted in negligible impacts on the overall error. These experiments provide corroboration to the simple models used for capturing radial drainage flows, and also elucidate some effects (like oscillations of the radial flux) that are beyond the resolution of the models. This holds also for partial width lock-release, where axial symmetry is lost

    The ATLAS Barrel Level-1 Muon Trigger Calibration

    Get PDF
    The ATLAS experiment uses a system of three concentric Resistive Plate Chambers detectors layers for the level-1 muon trigger in the air-core barrel toroid region. The trigger classifies muons within different programmable transverse momentum ranges, and tags the identified tracks with the corresponding bunch crossing number. The algorithm looks for hit coincidences within different detector layers inside the programmed geometrical road which defines the transverse momentum cut. The on-detector electronics providing the trigger and detector readout functionalities collects input signals coming from the RPC front-end. Because of the different time-of-flights and cables and optical fibres lengths, signals have to be adjusted in time in order to be correctly aligned before being processed. Programmable delay logics are provided in the trigger and readout system to allow for time adjustment, for hit signals as well as for LHC Timing, Trigger and Control signals. The trigger calibration provides the set of numbers used during electronics initialization for correctly aligning signals inside the trigger and readout system. The functionality scheme and the algorithm of the calibration are presented

    An axiomatic/asymptotic evaluation of best theories for isotropic metallic and functionally graded plates employing non-polynomic functions

    Get PDF
    This paper presents Best Theory Diagrams (BTDs) constructed from various non-polynomial terms to identify best plate theories for metallic and functionally graded plates. The BTD is a curve that provides the minimum number of unknown variables necessary to obtain a given accuracy or the best accuracy given by a given number of unknown variables. The plate theories that belong to the BTD have been obtained using the Axiomatic/Asymptotic Method (AAM). The different plate theories reported are implemented by using the Carrera Unified Formulation (CUF). Navier-type solutions have been obtained for the case of simply supported plates loaded by a bisinusoidal transverse pressure with different length-to-thickness ratios. The BTDs built from non-polynomial functions are compared with BTDs using Maclaurin expansions. The results suggest that the plate models obtained from the BTD using nonpolynomial terms can improve the accuracy obtained from Maclaurin expansions for a given number of unknown variables of the displacement field

    The first level muon trigger in the central toroid of the ATLAS experiment

    Get PDF
    We present the design of the first level muon trigger in the central toroid of the ATLAS experiment at the Large Hadron Collider (LHC). A trigger is foreseen based on fast, finely segmented gaseous detectors, Resistive Plate Chambers (RPC), to unambiguously identify the interaction bunch crossing. We describe the detectors and the logic scheme of the trigger. © 1995
    • …
    corecore