157 research outputs found

    Strategies to link tiny neutrino masses with huge missing mass of the Universe

    Full text link
    With the start of the LHC, interest in electroweak scale models for the neutrino mass has grown. In this letter, we review two specific models that simultaneously explain neutrino masses and provide a suitable DM candidate. We discuss the implications of these models for various observations and experiments including the LHC, Lepton Flavor Violating (LFV) rare decays, direct and indirect dark matter searches and Kaon decay.Comment: 17 pages, one diagram, talk given at International Conference on Flavor Physics in the LHC era in Singapor

    A novel ultrafast-low-dose computed tomography protocol allows concomitant coronary artery evaluation and lung cancer screening

    Get PDF
    BACKGROUND:Cardiac computed tomography (CT) is often performed in patients who are at high risk for lung cancer in whom screening is currently recommended. We tested diagnostic ability and radiation exposure of a novel ultra-low-dose CT protocol that allows concomitant coronary artery evaluation and lung screening. METHODS: We studied 30 current or former heavy smoker subjects with suspected or known coronary artery disease who underwent CT assessment of both coronary arteries and thoracic area (Revolution CT, General Electric). A new ultrafast-low-dose single protocol was used for ECG-gated helical acquisition of the heart and the whole chest. A single IV iodine bolus (70-90 ml) was used. All patients with CT evidence of coronary stenosis underwent also invasive coronary angiography. RESULTS: All the coronary segments were assessable in 28/30 (93%) patients. Only 8 coronary segments were not assessable in 2 patients due to motion artefacts (assessability: 98%; 477/485 segments). In the assessable segments, 20/21 significant stenoses (> 70% reduction of vessel diameter) were correctly diagnosed. Pulmonary nodules were detected in 5 patients, thus requiring to schedule follow-up surveillance CT thorax. Effective dose was 1.3 ± 0.9 mSv (range: 0.8-3.2 mSv). Noteworthy, no contrast or radiation dose increment was required with the new protocol as compared to conventional coronary CT protocol. CONCLUSIONS:The novel ultrafast-low-dose CT protocol allows lung cancer screening at time of coronary artery evaluation. The new approach might enhance the cost-effectiveness of coronary CT in heavy smokers with suspected or known coronary artery disease

    Finite Gluon Fusion Amplitude in the Gauge-Higgs Unification

    Full text link
    We show that the gluon fusion amplitude in the gauge-Higgs unification scenario is finite in any dimension regardless of its nonrenormalizability. This result is supported by the fact that the local operator describing the gluon fusion process is forbidden by the higher dimensional gauge invariance. We explicitly calculate the gluon fusion amplitude in an arbitrary dimensional gauge-Higgs unification model and indeed obtain the finite result.Comment: 15 pages, final version to appear in MPL

    Precision Measurements and Fermion Geography in the Randall-Sundrum Model Revisited

    Get PDF
    We re-examine the implications of allowing fermion fields to propagate in the five-dimensional bulk of the Randall-Sundrum (RS) localized gravity model. We find that mixing between the Standard Model top quark and its Kaluza Klein excitations generates large contributions to the rho parameter and consequently restricts the fundamental RS scale to lie above 100 TeV. To circumvent this bound we propose a `mixed' scenario which localizes the third generation fermions on the TeV brane and allows the lighter generations to propagate in the full five-dimensional bulk. We show that this construction naturally reproduces the observed m_c / m_t and m_s / m_b hierarchies. We explore the signatures of this scenario in precision measurements and future high energy collider experiments. We find that the region of parameter space that addresses the hierarchies of fermion Yukawa couplings permits a Higgs boson with a mass of 500 GeV and remains otherwise invisible at the LHC. However, the entire parameter region consistent with electroweak precision data is testable at future linear colliders. We briefly discuss possible constraints on this scenario arising from flavor changing neutral currents.Comment: 44 pages, 20 ps files; VII, typos fixed and refs adde

    A Simple Explanation for DAMA with Moderate Channeling

    Full text link
    We consider the possibility that the DAMA signal arises from channeled events in simple models where the dark matter interaction with nuclei is suppressed at small momenta. As with the standard WIMP, these models have two parameters (the dark matter mass and the size of the cross-section), without the need to introduce an additional energy threshold type of parameter. We find that they can be consistent with channeling fractions as low as about ~ 15%, so long as at least ~70% of the nuclear recoil energy for channeled events is deposited electronically. Given that there are reasons not to expect very large channeling fractions, these scenarios make the channeling explanation of DAMA much more compelling.Comment: 6 pages, 2 figure

    The W boson production cross section at the LHC through O(alpha_s^2)

    Full text link
    We compute the O(alpha_s^2) QCD corrections to the fully differential cross-section pp \to W X \to l \nu X, retaining all effects from spin correlations. The knowledge of these corrections makes it possible to calculate with high precision the W boson production rate and acceptance at the LHC, subject to realistic cuts on the lepton and missing energy distributions. For certain choices of cuts we find large corrections when going from next-to-leading order (NLO) to next-to-next-to-leading order (NNLO) in perturbation theory. These corrections are significantly larger than those obtained by parton-shower event generators merged with NLO calculations. Our calculation may be used to assess and significantly reduce the QCD uncertainties in the many studies of WW boson production planned at the LHC.Comment: 4 pages, revte

    The electroweak form factor \hat{\kappa}(q^2) and the running of \sin^2 \hat{\theta}_W

    Full text link
    Gauge independent form factors \rho^(e; e) and \hat{\kappa}^(e; e)(q^2) for Moller scattering at s << m_W^2 are derived. It is pointed out that \hat{\kappa}^(e; e) is very different from its counterparts in other processes. The relation between the effective parameter \hat{\kappa}^(e; e)(q^2,\mu) \sin^2 \hat{\theta}_W(\mu) and \sin^2 \theta_eff is derived in a scale-independent manner. A gauge and process-independent running parameter \sin^2 \hat{\theta}_W (q^2), based on the pinch-technique self-energy a_{\gamma Z} (q^2), is discussed for all q^2 values. At q^2=0 it absorbs very accurately the Czarnecki-Marciano calculation of the Moller scattering asymmetry at low s values, and at q^2 = m^2_Z it is rather close to \sin^2 \theta_eff. The q^2 dependence of \sin^2 \hat{\theta}_W (q^2) is displayed in the space and time-like domains.Comment: A new paragraph has been inserted at the beginning of the discussion in Section

    Contrasting Supersymmetry and Universal Extra Dimensions at the CLIC Multi-TeV e+e- Collider

    Full text link
    Universal extra dimensions and supersymmetry have rather similar experimental signatures at hadron colliders. The proper interpretation of an LHC discovery in either case may therefore require further data from a lepton collider. In this paper we identify methods for discriminating between the two scenarios at the linear collider. We study the processes of Kaluza-Klein muon pair production in universal extra dimensions in parallel to smuon pair production in supersymmetry, accounting for the effects of detector resolution, beam-beam interactions and accelerator induced backgrounds. We find that the angular distributions of the final state muons, the energy spectrum of the radiative return photon and the total cross-section measurement are powerful discriminators between the two models. Accurate determination of the particle masses can be obtained both by a study of the momentum spectrum of the final state leptons and by a scan of the particle pair production thresholds. We also calculate the production rates of various Kaluza-Klein particles and discuss the associated signatures.Comment: 20 pages, 13 figures, typeset in JHEP style, uses axodraw. Added new section 5. Version to appear in JHE

    Combining Monte Carlo generators with next-to-next-to-leading order calculations: event reweighting for Higgs boson production at the LHC

    Full text link
    We study a phenomenological ansatz for merging next-to-next-to-leading order (NNLO) calculations with Monte Carlo event generators. We reweight them to match bin-integrated NNLO differential distributions. To test this procedure, we study the Higgs boson production cross-section at the LHC, for which a fully differential partonic NNLO calculation is available. We normalize PYTHIA and MC@NLO Monte Carlo events for Higgs production in the gluon fusion channel to reproduce the bin integrated NNLO double differential distribution in the transverse momentum and rapidity of the Higgs boson. These events are used to compute differential distributions for the photons in the pp \to H \to \gamma \gamma decay channel, and are compared to predictions from fixed-order perturbation theory at NNLO. We find agreement between the reweighted generators and the NNLO result in kinematic regions where we expect a good description using fixed-order perturbation theory. Kinematic boundaries where resummation is required are also modeled correctly using this procedure. We then use these events to compute distributions in the pp \to H \to W^+W^- \to l^+l^- \nu\bar{\nu} channel, for which an accurate description is needed for measurements at the LHC. We find that the final state lepton distributions obtained from PYTHIA are not significantly changed by the reweighting procedure.Comment: 18 pages, 14 fig
    • …
    corecore