1,586 research outputs found

    Interaction of Platinum Films with the (0001#) and (0001) Surfaces of ZnO

    Get PDF
    In this investigation, the growth, structure, and electronic properties of Pt films on the polar surfaces of ZnO were examined using high-resolution electron energy-loss spectroscopy (HREELS) and low-energhy, electron diffraction (LEED). The growth mode of vapor-deposited Pt films on ZnO(0001#) and ZnO(0001) at 300 K was found to be nearly layer-by-layer. The surfaces of Pt films produced in this manner exhibited hexagonal symmetry and were stable up to 600 K. At higher temperatures, the Pt agglomerated into particles which remained oriented with respect to the ZnO substrate. HREELS results indicate that there are only weak interactions at the Pt/ZnO(0001#) interface, while charge transfer and Schottky barrier formation occures at the Pt/ZnO(0001) interface

    Out Where The Billows Roll High : Baritone or Contralto

    Get PDF
    https://digitalcommons.library.umaine.edu/mmb-vp/4489/thumbnail.jp

    Many roads, one destination for T cell progenitors

    Get PDF
    The thymus manufactures new T cells throughout life but contains no self-renewing potential. Instead, replenishment depends on recruitment of bone marrow–derived progenitors that circulate in the blood. Attempts to identify thymic-homing progenitors, and to assess the degree to which they are precommitted to the T cell lineage, have led to complex and sometimes conflicting results. As described here, this probably reflects the existence of multiple distinct types of T cell lineage progenitors as well as differences in individual experimental approaches

    Magnetohydrostatic solar prominences in near-potential coronal magnetic fields

    Full text link
    We present numerical magnetohydrostatic solutions describing the gravitationally stratified, bulk equilibrium of cool, dense prominence plasma embedded in a near-potential coronal field. These solutions are calculated using the FINESSE magnetohydrodynamics equilibrium solver and describe the morphologies of magnetic field distributions in and around prominences and the cool prominence plasma that these fields support. The equilibrium condition for this class of problem is usually different in distinct subdomains, separated by free boundaries, across which solutions are matched by suitable continuity or jump conditions describing force balance. We employ our precise finite element elliptic solver to calculate solutions not accessible by previous analytical techniques with temperature or entropy prescribed as free functions of the magnetic flux function, including a range of values of the polytropic index, temperature variations mainly across magnetic field lines and photospheric field profiles sheared close to the polarity inversion line. Out of the many examples computed here, perhaps the most noteworthy is one which reproduces precisely the three-part structure often encountered in observations: a cool dense prominence within a cavity/flux rope embedded in a hot corona. The stability properties of these new equilibria, which may be relevant to solar eruptions, can be determined in the form of a full resistive MHD spectrum using a companion hyperbolic stability solver.Comment: To appear in ApJ August 200

    Feasibility of utilizing the 200-inch Hale telescope as a deep-space optical receiver

    Get PDF
    Capturing the very faint optical communications signals expected from the Mars Laser Communication Demonstration (MLCD) experiment to fly aboard the Mars Telecommunications Orbiter (MTO) in 2009 requires a sensitive receiver placed at the focus of a large collecting aperture. For the purpose of demonstrating the potential of deep-space optical communication, it makes sense to employ a large astronomical telescope as a temporary receiver. Because of its large collecting aperture, its reputation as a well-run instrument, and its relative convenience, the 200-inch Hale Telescope on Palomar Mountain is being considered as a demonstration optical 'antenna' for the experiment. However, use of the telescope in this manner presents unique challenges to be overcome, the greatest of which is pointing the telescope and maintaining the communication link to within a few degrees of the Sun. This paper presents our candidate approaches for adapting the Hale telescope to meet the demonstration requirements, modifications to the facilities and infrastructure, the derivation of requirements for baffles and filters to meet the near-Sun pointing objectives, and initial data on the potential of candidate modifications to meet the requirements

    The Long Period, Massive Binaries HD 37366 and HD 54662: Potential Targets for Long Baseline Optical Interferometry

    Full text link
    We present the results from an optical spectroscopic analysis of the massive stars HD 37366 and HD 54662. We find that HD 37366 is a double-lined spectroscopic binary with a period of 31.8187 +/- 0.0004 days, and HD 54662 is also a double lined binary with a much longer period of 557.8 +/- 0.3 days. The primary of HD 37366 is classified as O9.5 V, and it contributes approximately two-thirds of the optical flux. The less luminous secondary is a broad-lined, early B-type main-sequence star. Tomographic reconstruction of the individual spectra of HD 37366 reveals absorption lines present in each component, enabling us to constrain the nature of the secondary and physical characteristics of both stars. Tomographic reconstruction was not possible for HD 54662; however, we do present mean spectra from our observations that show that the secondary component is approximately half as bright as the primary. The observed spectral energy distributions (SEDs) were fit with model SEDs and galactic reddening curves to determine the angular sizes of the stars. By assuming radii appropriate for their classifications, we determine distance ranges of 1.4 - 1.9 and 1.2 - 1.5 kpc for HD 37366 and HD 54662, respectively.Comment: 27 pages, 8 figures, Accepted for publication in Ap
    • …
    corecore