422 research outputs found

    Equilibrium solutions of the shallow water equations

    Get PDF
    A statistical method for calculating equilibrium solutions of the shallow water equations, a model of essentially 2-d fluid flow with a free surface, is described. The model contains a competing acoustic turbulent {\it direct} energy cascade, and a 2-d turbulent {\it inverse} energy cascade. It is shown, nonetheless that, just as in the corresponding theory of the inviscid Euler equation, the infinite number of conserved quantities constrain the flow sufficiently to produce nontrivial large-scale vortex structures which are solutions to a set of explicitly derived coupled nonlinear partial differential equations.Comment: 4 pages, no figures. Submitted to Physical Review Letter

    Inverse monoids and immersions of 2-complexes

    Get PDF
    It is well known that under mild conditions on a connected topological space X\mathcal X, connected covers of X\mathcal X may be classified via conjugacy classes of subgroups of the fundamental group of X\mathcal X. In this paper, we extend these results to the study of immersions into 2-dimensional CW-complexes. An immersion f:D→Cf : {\mathcal D} \rightarrow \mathcal C between CW-complexes is a cellular map such that each point y∈Dy \in {\mathcal D} has a neighborhood UU that is mapped homeomorphically onto f(U)f(U) by ff. In order to classify immersions into a 2-dimensional CW-complex C\mathcal C, we need to replace the fundamental group of C\mathcal C by an appropriate inverse monoid. We show how conjugacy classes of the closed inverse submonoids of this inverse monoid may be used to classify connected immersions into the complex

    Critical collapse of collisionless matter - a numerical investigation

    Get PDF
    In recent years the threshold of black hole formation in spherically symmetric gravitational collapse has been studied for a variety of matter models. In this paper the corresponding issue is investigated for a matter model significantly different from those considered so far in this context. We study the transition from dispersion to black hole formation in the collapse of collisionless matter when the initial data is scaled. This is done by means of a numerical code similar to those commonly used in plasma physics. The result is that for the initial data for which the solutions were computed, most of the matter falls into the black hole whenever a black hole is formed. This results in a discontinuity in the mass of the black hole at the onset of black hole formation.Comment: 22 pages, LaTeX, 7 figures (ps-files, automatically included using psfig

    Complex Patterns in Reaction-Diffusion Systems: A Tale of Two Front Instabilities

    Full text link
    Two front instabilities in a reaction-diffusion system are shown to lead to the formation of complex patterns. The first is an instability to transverse modulations that drives the formation of labyrinthine patterns. The second is a Nonequilibrium Ising-Bloch (NIB) bifurcation that renders a stationary planar front unstable and gives rise to a pair of counterpropagating fronts. Near the NIB bifurcation the relation of the front velocity to curvature is highly nonlinear and transitions between counterpropagating fronts become feasible. Nonuniformly curved fronts may undergo local front transitions that nucleate spiral-vortex pairs. These nucleation events provide the ingredient needed to initiate spot splitting and spiral turbulence. Similar spatio-temporal processes have been observed recently in the ferrocyanide-iodate-sulfite reaction.Comment: Text: 14 pages compressed Postscript (90kb) Figures: 9 pages compressed Postscript (368kb

    A Storage Ring for Neutral Atoms

    Get PDF
    We have demonstrated a storage ring for ultra-cold neutral atoms. Atoms with mean velocities of 1 m/s corresponding to kinetic energies of ~100 neV are confined to a 2 cm diameter ring by magnetic forces produced by two current-carrying wires. Up to 10^6 atoms are loaded at a time in the ring, and 7 revolutions are clearly observed. Additionally, we have demonstrated multiple loading of the ring and deterministic manipulation of the longitudinal velocity distribution of the atoms using applied laser pulses. Applications of this ring include large area atom interferometers and cw monochromatic atomic beam generation.Comment: 4 pages, 5 figure

    Equations over free inverse monoids with idempotent variables

    Full text link
    We introduce the notion of idempotent variables for studying equations in inverse monoids. It is proved that it is decidable in singly exponential time (DEXPTIME) whether a system of equations in idempotent variables over a free inverse monoid has a solution. The result is proved by a direct reduction to solve language equations with one-sided concatenation and a known complexity result by Baader and Narendran: Unification of concept terms in description logics, 2001. We also show that the problem becomes DEXPTIME hard , as soon as the quotient group of the free inverse monoid has rank at least two. Decidability for systems of typed equations over a free inverse monoid with one irreducible variable and at least one unbalanced equation is proved with the same complexity for the upper bound. Our results improve known complexity bounds by Deis, Meakin, and Senizergues: Equations in free inverse monoids, 2007. Our results also apply to larger families of equations where no decidability has been previously known.Comment: 28 pages. The conference version of this paper appeared in the proceedings of 10th International Computer Science Symposium in Russia, CSR 2015, Listvyanka, Russia, July 13-17, 2015. Springer LNCS 9139, pp. 173-188 (2015

    From Labyrinthine Patterns to Spiral Turbulence

    Full text link
    A new mechanism for spiral vortex nucleation in nongradient reaction diffusion systems is proposed. It involves two key ingredients: An Ising-Bloch type front bifurcation and an instability of a planar front to transverse perturbations. Vortex nucleation by this mechanism plays an important role in inducing a transition from labyrinthine patterns to spiral turbulence. PACS numbers: 05.45.+b, 82.20.MjComment: 4 pages uuencoded compressed postscrip

    Improved numerical stability of stationary black hole evolution calculations

    Get PDF
    We experiment with modifications of the BSSN form of the Einstein field equations (a reformulation of the ADM equations) and demonstrate how these modifications affect the stability of numerical black hole evolution calculations. We use excision to evolve both non-rotating and rotating Kerr-Schild black holes in octant and equatorial symmetry, and without any symmetry assumptions, and obtain accurate and stable simulations for specific angular momenta J/M of up to about 0.9M.Comment: 13 pages, 11 figures, 1 typo in Eq. (20) correcte

    Atomic micromotion and geometric forces in a triaxial magnetic trap

    Get PDF
    Non-adiabatic motion of Bose-Einstein condensates of rubidium atoms arising from the dynamical nature of a time-orbiting-potential (TOP) trap was observed experimentally. The orbital micromotion of the condensate in velocity space at the frequency of the rotating bias field of the TOP was detected by a time-of-flight method. A dependence of the equilibrium position of the atoms on the sense of rotation of the bias field was observed. We have compared our experimental findings with numerical simulations. The nonadiabatic following of the atomic spin in the trap rotating magnetic field produces geometric forces acting on the trapped atoms.Comment: 4 pages, 4 figure
    • 

    corecore