413 research outputs found
SU(2) Glueballs, diquarks and mesons in dense matter
We present preliminary results from a high statistics study of 2-color QCD at
low temperature and non-zero baryon density. The simulations are carried out on
a 6^3*12 lattice and use a standard hybrid molecular dynamics algorithm for
staggered fermions for two values of quark mass. Observables include glueball
correlators evaluated via a multi-step smearing procedure as well as scalar and
vector mesons and diquarks.Comment: Poster presented at Lattice 2003 (Non zero temperature and density),
3 pages, 4 figure
Glueballs and mesons in the superfluid phase of two-color QCD
QCD with two colors undergoes a transition to a superfluid phase with diquark
condensate when the quark chemical potential equals half the pion mass. We
investigate the gluonic aspects of the transition by inspecting the behavior of
the glueball correlators evaluated via a multi-step smearing procedure for
several values of chemical potential ranging between zero and the saturation
threshold. The results are based on an analysis of 0++ glueball correlators, on
a sample of 40000 independent configurations on each parameter set. The
amplitudes of the correlators peak for \mu = m_\pi/2,indicating that the
superfluid phase transition affects the gluonic sector as well. The mass of the
fundamental state decreases in the superfluid phase, and the amplitude of the
propagators drops, suggesting a reduction of the gluon condensate, in agreement
with model calculations. The analysis of the smearing dependence of the results
helps disentangling the role of long and short distance phenomena at the
superfluid transition.Comment: 7 pages, 5 figures, talk presented at the XXV International Symposium
on Lattice Field Theory, July 30 - August 4, 2007, Regensburg,German
Hardware development for the surface tension driven convection experiment aboard the USML-1 spacelab mission
The Surface Tension Driven Convection Experiment is a Space Transportation System flight experiment to study both transient and steady thermocapillary fluid flows aboard the USML-1 Spacelab mission planned for March 1992. Hardware is under development to establish the experimental conditions and perform the specified measurements, for both ground based research and the flight experiment in a Spacelab single rack. Major development areas include an infrared thermal imaging system for surface temperature measurement, a CO2 laser and control system for surface heating, and for flow visualization, a He-Ne laser and optical system in conjunction with an intensified video camera. For ground based work the components of each system were purchased or designed, and tested individually. The three systems will be interfaced with the balance of the experimental hardware and will constitute a working engineering model. A description of the three systems and examples of the component performance is given along with the plans for the development of flight hardware
Thermal conductivity and dielectric properties of polypropylene-based hybrid compounds containing multiwalled carbon nanotubes
In this article, we explore the possibility to develop composites with improved thermal conductivity and electrically insulating
properties. The strategy adopted is to combine a thermal and electrical conductive filler (multiwalled carbon nanotubes) with
secondary dielectric (but thermally conductive) fillers. To this end, particles with different compositions, sizes, and shape were used
as secondary fillers and the composites, prepared by melt compounding, are characterized in terms of thermal and dielectric properties.
Results show that, in ternary formulations, an increase of thermal conductivity is always verified for all kind of secondary particles.
Analogously, increments in electrical conductivity are observed for ternary compounds containing larger size secondary fillers,
while a significant reduction is achieved with the addition of smaller ones. This behavior is explained in terms of mutual distribution
of the fillers and is consistent with direct (scanning electron microscopy) and indirect (rheological) observations
Lattice Gauge Fixing for Parameter Dependent Covariant Gauges
We propose a non-perturbative procedure to fix generic covariant gauges on
the lattice. Varying the gauge parameter, this gauge fixing provides a concrete
method to check numerically the gauge dependence of correlators measured on the
lattice. The new algorithm turns out to converge with a good efficiency. As a
preliminary physical result, we find a sensitive dependence of the gluon
propagator on the gauge parameter.Comment: 10 pages (LaTeX2e), 5 eps figure
Dielectric behavior of biopolymer based composites containing multi wall carbon nanotubes: Effect of filler content and aspect ratio
Multi wall carbon nanotubes (MWCNTs) with different aspect ratios (30, 105 and 667) were included in a commercial fully biodegradable blend using melt mixing. Samples of composite systems prepared by hot molding and containing up to 1.2 vol% of MWCNTs were studied by means of DC electrical resistivity and dielectric spectroscopy in order to enhance effect of filler content and aspect ratio on their dielectric behavior. Raman spectroscopic investigations and morphological observations were also performed in order to correlate dielectric behavior with surface carbon nanotubes features and to check the actual level of dispersion of carbon nanotubes under the applied processing conditions. Results emphasized that the carbon nanotubes aspect ratio and their surface regularity determine the electrical properties of composites because they strongly influence percolation thresholds, dielectric permittivity and dissipation factor of produced materials. A satisfying dispersion of the filler seems to be achieved under the employed processing conditions. These preliminary results demonstrates possible applications of this type of biobased systems in many applications going from stress control to devices for high storage energy
Zinc ion coordination as a modulating factor of the ZnuA histidine-rich loop flexibility: a molecular modeling and fluorescence spectroscopy study
ZnuA is the soluble component of the high-affinity ZnuABC zinc transporter belonging to the ATP-binding cassette-type periplasmic Zn-binding proteins. The zinc transporter ZnuABC is composed by three proteins: ZnuB, the membrane permease, ZnuC, the ATPase component and ZnuA, the soluble periplasmic metal-binding protein which captures Zn and delivers it to ZnuB. The ZnuA protein contains a charged flexible loop, rich in histidines and acidic residues, showing significant species-specific differences. Various studies have established that this loop contributes to the formation of a secondary zinc binding site, which has been proposed to be important in the acquisition of periplasmic Zn for its delivery to ZnuB or for regulation of zinc uptake. Due to its high mobility the structure of the histidine-rich loop has never been solved by X-ray diffraction studies. In this paper, through a combined use of molecular modeling, mutagenesis and fluorescence spectroscopy, we confirm the presence of two zinc binding sites characterized by different affinities for the metal ion and show that the flexibility of the loop is modulated by the binding of the zinc ions to the protein. The data obtained by fluorescence spectroscopy have then be used to validate a 3D model including the unsolved histidine-rich loop
ROBOT-MEDIATED AND CLINICAL SCALES EVALUATION AFTER UPPER LIMB BOTULINUM TOXIN TYPE A INJECTION IN CHILDREN WITH HEMIPLEGIA
Objective: The aim of this pilot study was to examine changes in different aspects of impairment, including spasticity in the upper limbs, of hemiplegic children following botulinum toxin type A intervention. Progress was assessed using standard clinical measurements and a robotic device. Design: Pre-post multiple baseline. Subjects: Six children with hemiplegia. Methods: Botulinium toxin type A injections were administered into the affected upper limb muscles. Outcomes were evaluated before and one month after the injection. Outcome assessments included: Melbourne Scale, Modified Ashworth Scale (MAS) and Passive Range of Motion. Furthermore, a robotic device was employed as an evaluation tool. Results: Patients treated with botulinum toxin type A had significantly greater reduction in spasticity (MAS, p < 0.01), which explains an improvement in upper limb function and quality movement measured with the Melbourne Scale (p < 0.01). These improvements are consistent with robot-based evaluation results that showed statistically significant changes (p < 0.01) following botulinum toxin type A injections. Conclusion: The upper limb performs a wide variety of movements. The multi-joint nature of the task during the robotmediated evaluation required active control of joint interaction forces. There was good correlation between clinical scales and robotic evaluation. Hence the robot-mediated assessment may be used as an additional tool to quantify the degree of motor improvement after botulinum toxin type A injections
- …