8 research outputs found

    Multi-ancestry genome-wide association meta-analysis of Parkinson?s disease

    Get PDF
    Although over 90 independent risk variants have been identified for Parkinson’s disease using genome-wide association studies, most studies have been performed in just one population at a time. Here we performed a large-scale multi-ancestry meta-analysis of Parkinson’s disease with 49,049 cases, 18,785 proxy cases and 2,458,063 controls including individuals of European, East Asian, Latin American and African ancestry. In a meta-analysis, we identified 78 independent genome-wide significant loci, including 12 potentially novel loci (MTF2, PIK3CA, ADD1, SYBU, IRS2, USP8, PIGL, FASN, MYLK2, USP25, EP300 and PPP6R2) and fine-mapped 6 putative causal variants at 6 known PD loci. By combining our results with publicly available eQTL data, we identified 25 putative risk genes in these novel loci whose expression is associated with PD risk. This work lays the groundwork for future efforts aimed at identifying PD loci in non-European populations

    Genome-wide analysis of 53,400 people with irritable bowel syndrome highlights shared genetic pathways with mood and anxiety disorders

    No full text
    Irritable bowel syndrome (IBS) results from disordered brain–gut interactions. Identifying susceptibility genes could highlight the underlying pathophysiological mechanisms. We designed a digestive health questionnaire for UK Biobank and combined identified cases with IBS with independent cohorts. We conducted a genome-wide association study with 53,400 cases and 433,201 controls and replicated significant associations in a 23andMe panel (205,252 cases and 1,384,055 controls). Our study identified and confirmed six genetic susceptibility loci for IBS. Implicated genes included NCAM1, CADM2, PHF2/FAM120A, DOCK9, CKAP2/TPTE2P3 and BAG6. The first four are associated with mood and anxiety disorders, expressed in the nervous system, or both. Mirroring this, we also found strong genome-wide correlation between the risk of IBS and anxiety, neuroticism and depression (rg > 0.5). Additional analyses suggested this arises due to shared pathogenic pathways rather than, for example, anxiety causing abdominal symptoms. Implicated mechanisms require further exploration to help understand the altered brain–gut interactions underlying IBS

    Multi-Trait Genetic Analysis Identifies Autoimmune Loci Associated with Cutaneous Melanoma

    No full text
    Genome-wide association studies (GWAS) have identified a number of risk loci for cutaneous melanoma. Cutaneous melanoma shares overlapping genetic risk (genetic correlation) with a number of other traits, including its risk factors such as sunburn propensity. This genetic correlation can be exploited to identify additional cutaneous melanoma risk loci by multitrait analysis of GWAS (MTAG). We used bivariate linkage disequilibrium–score regression score regression to identify traits that are genetically correlated with clinically confirmed cutaneous melanoma and then used publicly available GWAS for these traits in a multitrait analysis of GWAS. Multitrait analysis of GWAS allows GWAS to be combined while accounting for sample overlap and incomplete genetic correlation. We identified a total of 74 genome-wide independent loci, 19 of them were not previously reported in the input cutaneous melanoma GWAS meta-analysis. Of these loci, 55 were replicated (P < 0.05/74, Bonferroni-corrected P-value in two independent cutaneous melanoma replication cohorts from Melanoma Institute Australia and 23andMe, Inc. Among the, to our knowledge, previously unreported cutaneous melanoma loci are ones that have also been associated with autoimmune traits including rs715199 near LPP and rs10858023 near AP4B1. Our analysis indicates genetic correlation between traits can be leveraged to identify new risk genes for cutaneous melanoma.</p

    Discovery of 42 genome-wide significant loci associated with dyslexia

    No full text
    Auteurs : 23andMe Research Team*, Quantitative Trait Working Group of the GenLang Consortium*International audienceReading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but n ot n eu ro an at omical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia. The ability to read is crucial for success at school and access to employment, information and health and social services, and is related to attained socioeconomic status 1. Dyslexia is a neurodevelopmental disorder characterized by severe reading difficulties, present in 5-17.5% of the population, depending on diagnostic criteria 2,3. It often involves impaired phonological processing (the decoding of sound units, or phonemes, within words) and frequently co-occurs with psychiatric and other developmental disorders 4 , especially attention-deficit hyperactivity disorde

    Discovery of 42 genome-wide significant loci associated with dyslexia

    No full text
    AbstractReading and writing are crucial life skills but roughly one in ten children are affected by dyslexia, which can persist into adulthood. Family studies of dyslexia suggest heritability up to 70%, yet few convincing genetic markers have been found. Here we performed a genome-wide association study of 51,800 adults self-reporting a dyslexia diagnosis and 1,087,070 controls and identified 42 independent genome-wide significant loci: 15 in genes linked to cognitive ability/educational attainment, and 27 new and potentially more specific to dyslexia. We validated 23 loci (13 new) in independent cohorts of Chinese and European ancestry. Genetic etiology of dyslexia was similar between sexes, and genetic covariance with many traits was found, including ambidexterity, but not neuroanatomical measures of language-related circuitry. Dyslexia polygenic scores explained up to 6% of variance in reading traits, and might in future contribute to earlier identification and remediation of dyslexia.</jats:p

    The Genetic Architecture of Depression in Individuals of East Asian Ancestry

    No full text
    corecore