4 research outputs found

    Toward personalization of asthma treatment according to trigger factors

    Get PDF
    Asthma is a severe and chronic disabling disease affecting more than 300 million people worldwide. Although in the past few drugs for the treatment of asthma were available, new treatment options are currently emerging, which appear to be highly effective in certain subgroups of patients. Accordingly, there is a need for biomarkers that allow selection of patients for refined and personalized treatment strategies. Recently, serological chip tests based on microarrayed allergen molecules and peptides derived from the most common rhinovirus strains have been developed, which may discriminate 2 of the most common forms of asthma, that is, allergen- and virus-triggered asthma. In this perspective, we argue that classification of patients with asthma according to these common trigger factors may open new possibilities for personalized management of asthma.Fil: Niespodziana, Katarzyna. Vienna University of Technology; AustriaFil: Borochova, Kristina. Vienna University of Technology; AustriaFil: Pazderova, Petra. Vienna University of Technology; AustriaFil: Schlederer, Thomas. Vienna University of Technology; AustriaFil: Astafyeva, Natalia. Saratov State Medical University; RusiaFil: Baranovskaya, Tatiana. Belarusian Medical Academy of Post Diploma Studies; BielorrusiaFil: Barbouche, Mohamed Ridha. Institut Pasteur de Tunis; TúnezFil: Beltyukov, Evgeny. Ural State Medical University; RusiaFil: Berger, Angelika. Vienna University of Technology; AustriaFil: Borzova, Elena. Russian Medical Academy of Continuous Professional Education; RusiaFil: Bousquet, Jean. MACVIA; Francia. Humboldt-Universität zu Berlin; AlemaniaFil: Bumbacea, Roxana S.. University of Medicine and Pharmacy "Carol Davila"; RumaniaFil: Bychkovskaya, Snezhana. Krasnoyarsk Medical University; RusiaFil: Caraballo, Luis. Universidad de Cartagena; ColombiaFil: Chung, Kian Fan. Imperial College London; Reino Unido. MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Reino UnidoFil: Custovic, Adnan. Imperial College London; Reino Unido. MRC and Asthma UK Centre in Allergic Mechanisms of Asthma; Reino UnidoFil: Docena, Guillermo H.. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Estudios Inmunológicos y Fisiopatológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Estudios Inmunológicos y Fisiopatológicos; ArgentinaFil: Eiwegger, Thomas. University Of Toronto. Hospital For Sick Children; CanadáFil: Evsegneeva, Irina. Sechenov First Moscow State Medical University; RusiaFil: Emelyanov, Alexander. North-Western Medical University; RusiaFil: Errhalt, Peter. University Hospital Krems and Karl Landsteiner University of Health Sciences; AustriaFil: Fassakhov, Rustem. Kazan Federal University; RusiaFil: Fayzullina, Rezeda. Bashkir State Medical University; RusiaFil: Fedenko, Elena. NRC Institute of Immunology FMBA of Russia; RusiaFil: Fomina, Daria. Sechenov First Moscow State Medical University; RusiaFil: Gao, Zhongshan. Zhejiang University; ChinaFil: Giavina Bianchi, Pedro. Universidade de Sao Paulo; BrasilFil: Gotua, Maia. David Tvildiani Medical University; GeorgiaFil: Greber Platzer, Susanne. Vienna University of Technology; AustriaFil: Hedlin, Gunilla. Karolinska Huddinge Hospital. Karolinska Institutet; Sueci

    Towards personalization of asthma treatment according to trigger factors

    Get PDF
    Asthma is a severe and chronic disabling disease affecting more than 300 million people world-wide. While in the past few drugs for treatment of asthma were available, new treatment options are currently emerging which appear to be highly effective in certain subgroups of patients. Accordingly there is a need for biomarkers which allow selection of patients for refined and personalized treatment strategies. Recently, serological chip tests based on micro-arrayed allergen molecules and peptides derived from the most common rhinovirus strains have been developed which may discriminate two of the most common forms of asthma, i.e., allergen- and virus-triggered asthma. In this perspective we argue that classification of asthma patients according to these common trigger factors may open new possibilities for personalized management of asthma

    Identification of Epitopes on Rhinovirus 89 Capsid Proteins Capable of Inducing Neutralizing Antibodies

    No full text
    Rhinoviruses (RVs) are major causes of the common cold, but they can also trigger exacerbations of asthma. More than 160 different RV strains exist and can be classified into three genetic species (RV-A, RV-B and RV-C) which bind to different receptors on human cells including intracellular adhesion molecule 1 (ICAM-1), the low-density lipoprotein receptor (LDLR) or the cadherin-related family member 3 (CDHR3). Epitopes located in the RV capsid have mainly been determined for RV2, a minor-group RV-A strain binding to LDLR, and for RV14, a major-group RV-B strain binding to ICAM-1. In order to study epitopes involved in the neutralization of RV89, an ICAM-1-binding RV-A strain which is highly different from RV2 and RV14 in terms of receptor specificity and sequence, respectively, we analyzed the specificity and epitopes of a highly neutralizing antiserum using recombinantly produced RV89 capsid proteins (VP1, VP2, VP3 and VP4), recombinant fragments and synthetic overlapping peptides thereof. We found that the antiserum which neutralized in vitro RV89 infection up to a dilution of 1:24,000 reacted with the capsid proteins VP1 and VP2 but not with VP3 and VP4. The neutralizing antibodies recognized recombinant fragments comprising approximately 100 amino acids of the N- and C-terminus of VP1 and the middle part of VP2, in particular, three peptides which, according to molecular modeling based on the three-dimensional structure of RV16, were surface-exposed on the viral capsid. Two recombinant fusion proteins containing the identified peptides fused to hepatitis B (HBV)-derived preS as a carrier protein induced upon immunization of rabbits antibodies capable of neutralizing in vitro RV89 infections. Interestingly, the virus-neutralizing epitopes determined for RV89 corresponded to those determined for minor-group RV2 binding to LDL and major-group RV14 belonging to the RV-B species, which are highly different from RV89. Our results indicate that highly different RV strains, even when reacting with different receptors, seem to engage similar parts of their capsid in the infection process. These results may be important for the design of active and passive immunization strategies for RV

    Toward personalization of asthma treatment according to trigger factors

    Get PDF
    International audienceAsthma is a severe and chronic disabling disease affecting more than 300 million people worldwide. Although in the past few drugs for the treatment of asthma were available, new treatment options are currently emerging, which appear to be highly effective in certain subgroups of patients. Accordingly, there is a need for biomarkers that allow selection of patients for refined and personalized treatment strategies. Recently, serological chip tests based on microarrayed allergen molecules and peptides derived from the most common rhinovirus strains have been developed, which may discriminate 2 of the most common forms of asthma, that is, allergen- and virus-triggered asthma. In this perspective, we argue that classification of patients with asthma according to these common trigger factors may open new possibilities for personalized management of asthma
    corecore