32 research outputs found

    The effector repertoire of Fusarium oxysporum determines the tomato xylem proteome composition following infection

    Get PDF
    Plant pathogens secrete small proteins, of which some are effectors that promote infection. During colonization of the tomato xylem vessels the fungus Fusarium oxysporum f.sp. lycopersici (Fol) secretes small proteins that are referred to as SIX (Secreted In Xylem) proteins. Of these, Six1 (Avr3), Six3 (Avr2), Six5, and Six6 are required for full virulence, denoting them as effectors. To investigate their activities in the plant, the xylem sap proteome of plants inoculated with Fol wild-type or either AVR2, AVR3, SIX2, SIX5, or SIX6 knockout strains was analyzed with nano-Liquid Chromatography-Mass Spectrometry (nLC-MSMS). Compared to mock-inoculated sap 12 additional plant proteins appeared while 45 proteins were no longer detectable in the xylem sap of Fol-infected plants. Of the 285 proteins found in both uninfected and infected plants the abundance of 258 proteins changed significantly following infection. The xylem sap proteome of plants infected with four Fol effector knockout strains differed significantly from plants infected with wild-type Fol, while that of the SIX2-knockout inoculated plants remained unchanged. Besides an altered abundance of a core set of 24 differentially accumulated proteins (DAPs), each of the four effector knockout strains affected specifically the abundance of a subset of DAPs. Hence, Fol effectors have both unique and shared effects on the composition of the tomato xylem sap proteome.</p

    Suppression of Plant Resistance Gene-Based Immunity by a Fungal Effector

    Get PDF
    The innate immune system of plants consists of two layers. The first layer, called basal resistance, governs recognition of conserved microbial molecules and fends off most attempted invasions. The second layer is based on Resistance (R) genes that mediate recognition of effectors, proteins secreted by pathogens to suppress or evade basal resistance. Here, we show that a plant-pathogenic fungus secretes an effector that can both trigger and suppress R gene-based immunity. This effector, Avr1, is secreted by the xylem-invading fungus Fusarium oxysporum f.sp. lycopersici (Fol) and triggers disease resistance when the host plant, tomato, carries a matching R gene (I or I-1). At the same time, Avr1 suppresses the protective effect of two other R genes, I-2 and I-3. Based on these observations, we tentatively reconstruct the evolutionary arms race that has taken place between tomato R genes and effectors of Fol. This molecular analysis has revealed a hitherto unpredicted strategy for durable disease control based on resistance gene combinations

    A tomato xylem sap protein represents a new family of small cysteine-rich proteins with structural similarity to lipid transfer proteins

    Get PDF
    AbstractThe coding sequence of a major xylem sap protein of tomato was identified with the aid of mass spectrometry. The protein, XSP10, represents a novel family of extracellular plant proteins with structural similarity to plant lipid transfer proteins. The XSP10 gene is constitutively expressed in roots and lower stems. The decline of XSP10 protein levels in tomato infected with a fungal vascular pathogen may reflect breakdown or modification by the pathogen

    Processing, Targeting, and Antifungal Activity of Stinging Nettle Agglutinin in Transgenic Tobacco

    No full text
    The gene encoding the precursor to stinging nettle (Urtica dioica L.) isolectin I was introduced into tobacco (Nicotiana tabacum). In transgenic plants this precursor was processed to mature-sized lectin. The mature isolectin is deposited intracellularly, most likely in the vacuoles. A gene construct lacking the C-terminal 25 amino acids was also introduced in tobacco to study the role of the C terminus in subcellular trafficking. In tobacco plants that expressed this construct, the mutant precursor was correctly processed and the mature isolectin was targeted to the intercellular space. These results indicate the presence of a C-terminal signal for intracellular retention of stinging nettle lectin and most likely for sorting of the lectin to the vacuoles. In addition, correct processing of this lectin did not depend on vacuolar deposition. Isolectin I purified from tobacco displayed identical biological activities as isolectin I isolated from stinging nettle. In vitro antifungal assays on germinated spores of the fungi Botrytis cinerea, Trichoderma viride, and Colletotrichum lindemuthianum revealed that growth inhibition by stinging nettle isolectin I occurs at a specific phase of fungal growth and is temporal, suggesting that the fungi had an adaptation mechanism

    External validation of a prediction model to select the best day-three embryo for transfer in in vitro fertilization or intracytoplasmatic sperm injection procedures

    No full text
    \u3cp\u3eObjective: To evaluate the multivariate embryo selection model by van Loendersloot et al. (2014) (VL) in a different geographical context. Design: This is a retrospective external validation study of a 5-year cohort of women undergoing in vitro fertilization or intracytoplasmatic sperm injection. Setting: Two outpatient fertility clinics. Patient(s): A total of 1,197 women who underwent 1,610 fresh in vitro fertilization or intracytoplasmatic sperm injection cycles with single embryo transfer were included. Intervention(s): None. Main Outcome Measure(s): The area under the receiver operating characteristics curve for diagnostic efficacy was used to assess the discriminative value of the model. Calibration for testing the validity of the VL model was performed using the Hosmer-Lemeshow goodness-of-fit test and a calibration plot. Result(s): Three hundred thirty-three patients (21%) achieved a viable pregnancy of at least 11 weeks. The area under the receiver operating characteristics curve using the VL model was 0.68. No significant difference between the predicted implantation rate and the observed implantation rates was showed using the Hosmer-Lemeshow (X\u3csup\u3e2\u3c/sup\u3e= 6.70). The calibration plot showed an intercept of the regression line of 0.34 and the estimated slope was 0.72. Conclusion: The investigated VL model was able to distinguish between higher and lower implantation potential of embryos in our clinical setting.\u3c/p\u3

    A pair of effectors encoded on a conditionally dispensable chromosome of Fusarium oxysporum suppress host-specific immunity

    Get PDF
    Yu Ayukawa, Shuta Asai, et al. report the genome sequence of a Fusarium oxysporum isolate and demonstrate that it contains different conditionally dispensable chromosomes which are important to confer virulence on specific hosts, like Arabidopsis thaliana or cabbage. Altogether, these results provide further insight into the mechanisms underlying F. oxysporum pathogenicity

    The AVR2–SIX5 gene pair is required to activate I-2-mediated immunity in tomato

    Get PDF
    •Plant-invading microbes betray their presence to a plant by exposure of antigenic molecules such as small, secreted proteins called ‘effectors’. In Fusarium oxysporum f. sp. lycopersici (Fol) we identified a pair of effector gene candidates, AVR2-SIX5, whose expression is controlled by a shared promoter. •The pathogenicity of AVR2 and SIX5 Fol knockouts was assessed on susceptible and resistant tomato (Solanum lycopersicum) plants carrying I-2. The I-2 NB-LRR protein confers resistance to Fol races carrying AVR2. •Like Avr2, Six5 was found to be required for full virulence on susceptible plants. Unexpectedly, each knockout could breach I-2-mediated disease resistance. So whereas Avr2 is sufficient to induce I-2-mediated cell death, Avr2 and Six5 are both required for resistance. Avr2 and Six5 interact in yeast two-hybrid assays as well as in planta. Six5 and Avr2 accumulate in xylem sap of plants infected with the reciprocal knockouts, showing that lack of I-2 activation is not due to a lack of Avr2 accumulation in the SIX5 mutant. •The effector repertoire of a pathogen determines its host specificity and its ability to manipulate plant immunity. Our findings challenge an oversimplified interpretation of the gene-for-gene model by showing requirement of two fungal genes for immunity conferred by one resistance gene
    corecore