273 research outputs found

    Weighting factor elicitation for sustainability assessment of energy technologies

    Get PDF
    In this paper, an approach for sustainability assessment of innovative energy technologies is expanded by multi-criteria decision analysis (MCDA) methods to aggregate indicator results and support decision-making. One of the most important steps for MCDA is to determine weighting factors for individual indicators. Thus, a workshop was performed to elicit weighting factors for sustainability assessments of energy technologies from developers of such technologies and energy system modellers from academia. These stakeholders expressed their preferences with respect to sustainability criteria using the Simple Multi Attribute Rating Technique (SMART). A triple bottom line approach of sustainable development was used as the basis for the aggregation of indicator results. This approach is based on Life Cycle Costing, Life Cycle Assessment and social indicators. Obtained weighting factors were applied to an integrative sustainability assessment with the aggregation method Preference Ranking Organization METHod for Enrichment of Evaluations (PROMETHEE). Hydrogen-based mobility as an important technology to foster decarbonization in the transport sector is used as a case study for the application of the derived weighting factors. A conventional vehicle, powered by fossil fuel, is compared with a fuel cell electric vehicle (FCEV) for the year 2050. Different options (pipeline, compressed gaseous hydrogen, liquid hydrogen, liquid organic hydrogen carrier) are discussed for the supply of hydrogen. The results for this weighting factor set are compared with an equal weighting scenario of the three sustainability dimensions and indicators within one sustainability dimension. The FCEV, using pipelines for hydrogen supply, came out first in the assessment as well as in all sensitivity analyses

    Distribution of serotonergic and dopaminergic nerve fibers in the salivary gland complex of the cockroach Periplaneta americana

    Get PDF
    BACKGROUND: The cockroach salivary gland consists of secretory acini with peripheral ion-transporting cells and central protein-producing cells, an extensive duct system, and a pair of reservoirs. Salivation is controled by serotonergic and dopaminergic innervation. Serotonin stimulates the secretion of a protein-rich saliva, dopamine causes the production of a saliva without proteins. These findings suggest a model in which serotonin acts on the central cells and possibly other cell types, and dopamine acts selectively on the ion-transporting cells. To examine this model, we have analyzed the spatial relationship of dopaminergic and serotonergic nerve fibers to the various cell types. RESULTS: The acinar tissue is entangled in a meshwork of serotonergic and dopaminergic varicose fibers. Dopaminergic fibers reside only at the surface of the acini next to the peripheral cells. Serotonergic fibers invade the acini and form a dense network between central cells. Salivary duct segments close to the acini are locally associated with dopaminergic and serotonergic fibers, whereas duct segments further downstream have only dopaminergic fibers on their surface and within the epithelium. In addition, the reservoirs have both a dopaminergic and a serotonergic innervation. CONCLUSION: Our results suggest that dopamine is released on the acinar surface, close to peripheral cells, and along the entire duct system. Serotonin is probably released close to peripheral and central cells, and at initial segments of the duct system. Moreover, the presence of serotonergic and dopaminergic fiber terminals on the reservoir indicates that the functions of this structure are also regulated by dopamine and serotonin

    Prospective assessment of energy technologies: a comprehensive approach for sustainability assessment

    Get PDF
    Background: A further increase in renewable energy supply is needed to substitute fossil fuels and combat climate change. Each energy source and respective technologies have specific techno-economic and environmental characteristics as well as social implications. This paper presents a comprehensive approach for prospective sustainability assessment of energy technologies developed within the Helmholtz Initiative “Energy System 2050” (ES2050).Methods: The “ES2050 approach” comprises environmental, economic, and social assessment. It includes established life cycle based economic and environmental indicators, and social indicators derived from a normative concept of sustainable development. The elaborated social indicators, i.e. patent growth rate, acceptance, and domestic value added, address three different socio-technical areas, i.e. innovation (patents), public perception (acceptance), and public welfare (value added).Results: The implementation of the “ES2050 approach” is presented exemplarily and different sustainability indicators and respective results are discussed based on three emerging technologies and corresponding case studies: (1) synthetic biofuels for mobility; (2) hydrogen from wind power for mobility; and (3) batteries for stationary energy storage. For synthetic biofuel, the environmental advantages over fossil gasoline are most apparent for the impact categories Climate Change and Ionizing Radiation—human health. Domestic value added accounts for 66% for synthetic biofuel compared to 13% for fossil gasoline. All hydrogen supply options can be considered to become near to economic competitiveness with fossil fuels in the long term. Survey participants regard Explosion Hazard as the most pressing concern about hydrogen fuel stations. For Li-ion batteries, the results for patent growth rate indicate that they enter their maturity phase.Conclusions: The “ES2050 approach” enables a consistent prospective sustainability assessment of (emerging) energy technologies, supporting technology developers, decision-makers in politics, industry, and society with knowledge for further evaluation, steering, and governance. The approach presented is considered rather a starting point than a blueprint for the comprehensive assessment of renewable energy technologies though, especially for the suggested social indicators, their significance and their embedding in context scenarios for prospective assessments

    Comparative patent analysis for the identification of global research trends for the case of battery storage, hydrogen and bioenergy

    Get PDF
    Patent documents provide knowledge about which countries are investing in certain technologies and make it possible to identify potential innovation trends. The aim of this article is to analyze trends in patenting that might result in innovations for three energy technologies: thermochemical conversion of biomass (Bioenergy), lithium-ion battery storage, and hydrogen production by alkaline water electrolysis. Based on different patent indicators, the most active countries are compared to provide insights into the global market position of a country, particularly Germany which is used as a reference here. In line with this, a freely available patent analysis software tool was developed directly using the European Patent Office database through their Open Patent Services. The results for named technologies show that patenting activity of Germany is low in comparison to other countries such as Japan, China, and the US. Whereas the position of Germany for batteries and hydrogen is comparable, bioenergy shows different results regarding the identified countries and the number of patents found. However, a broader context beyond patenting is suggested for consideration to make robust statements about particular technology trends. The presented tool and methodology in this study can serve as a blueprint for explorative assessments in any technological domain

    Effect of suture technique on the occurrence of incisional hernia after elective midline abdominal wall closure: study protocol for a randomized controlled trial

    Get PDF
    Background: Based on a recent meta-analysis, a continuous suture technique with a suture to wound length ratio of at least 4: 1, using a slowly absorbable monofilament suture material, is recommended for primary median laparotomy closure. Incisional hernia, which develops in 9 to 20% of patients, remains the major complication of abdominal wall closure. Current clinical data indicate that the incidence of incisional hernias increases by 60% between the first and the third year after median laparotomy, implicating that a follow-up period of 1 year postoperatively is too short with regard to this common complication. Trauma to the abdominal wall can be reduced by improvements in suture technique as well as suture material. Several factors, such as stitch length, suture tension, elasticity, and tensile strength of the suture material are discussed and currently under investigation. A Swedish randomized controlled trial showed a significant reduction in the incisional hernia rate by shortening the stitch length. However, a non-elastic thread was used and follow-up ended after 12 months. Therefore, we designed a multicenter, international, double-blinded, randomized trial to analyze the influence of stitch length, using an elastic, extra-long term absorbable monofilament suture, on the long term clinical outcome of abdominal wall closure. Methods: In total, 468 patients undergoing an elective, median laparotomy will be randomly allocated to either the short stitch or the long stitch suture technique for abdominal wall closure in a 1: 1 ratio. Centers located in Germany and Austria will participate. The primary endpoint measure is the incisional hernia rate 1 year postoperatively, as verified by ultrasound. The frequency of short term and long term complications as well as costs, length of hospital stay and patients' quality of life (EQ-5D-5 L) will be considered as secondary parameters. Following hospital discharge, patients will be examined after 30 days and 1, 3, and 5 years after surgery. Discussion: This study will provide further evidence on whether a short stitch suture technique in combination with an elastic, extra-long term absorbable monofilament suture can prevent incisional hernias in the long term, compared with the long stitch suture technique

    Halogenation of tyrosine perturbs large-scale protein self-organization

    Get PDF
    Protein halogenation is a common non-enzymatic post-translational modification contributing to aging, oxidative stress-related diseases and cancer. Here, we report a genetically encodable halogenation of tyrosine residues in a reconstituted prokaryotic filamentous cell-division protein (FtsZ) as a platform to elucidate the implications of halogenation that can be extrapolated to living systems of much higher complexity. We show how single halogenations can fine-tune protein structures and dynamics of FtsZ with subtle perturbations collectively amplified by the process of FtsZ self-organization. Based on experiments and theories, we have gained valuable insights into the mechanism of halogen influence. The bending of FtsZ structures occurs by affecting surface charges and internal domain distances and is reflected in the decline of GTPase activities by reducing GTP binding energy during polymerization. Our results point to a better understanding of the physiological and pathological effects of protein halogenation and may contribute to the development of potential diagnostic tools
    corecore