7 research outputs found

    Rat Psychomotor Development and Apoptotic Protein Expression in Their Brains After Glucocorticoid Treatment

    Get PDF
    A single injection of low-dose dexamethasone on postnatal day 3 resulted in the upregulation of key apoptotic enzyme – active caspase-3 in the rat cortex 120 hours after injection, and was followed by a delayed development of neonatal startle reflex and cliff avoidance reaction, an arrest of body weight gain and reduced spontaneous locomotor activity of pups. A single hydrocortisone administration to neonatal rats was only followed by a short-term delay in body weight gain, with no changes in the levels of active caspase-3 in the cortex and brainstem, as well as with no abnormalities in neurodevelopment. These results evidence for lesser neurotoxicity of natural hormone during neonatal development in comparison with dexamethasone and suggest the possibility that hydrocortisone might be used as a substitution for its synthetic analogue in the perinatal medicin

    A Link between Atmospheric Pressure and Fertility of Drosophila Laboratory Strains

    No full text
    Standardization of conditions under which insects are kept is of great importance when studying their physiology and researchers do their best to maintain it. Nevertheless, sometimes an obvious side effect of some unaccounted factor affecting insects’ reproduction can be revealed even under thoroughly controlled laboratory conditions. We faced such a phenomenon when studying the fertility level in two wild type Drosophila melanogaster strains. For fertility analysis, 50 newly emerged females and 50 males of each strain under study were transferred to fresh medium daily within 10 days. We found out that fertility of both strains was stable on days 2–10 after the oviposition onset in one experiment, while in another one it was significantly decreased during days 5–10. When compared to publicly available meteorological data, these changes in the fertility level demonstrated a strong association with one weather factor: barometric pressure. Thus, we conclude that changes in atmospheric pressure can be considered a factor affecting insects reproduction and discuss a possible mechanism of their influence on fertility

    Various Wolbachia genotypes differently influence host Drosophila dopamine metabolism and survival under heat stress conditions

    No full text
    Abstract Background One of the most widespread prokaryotic symbionts of invertebrates is the intracellular bacteria of Wolbachia genus which can be found in about 50% of insect species. Wolbachia causes both parasitic and mutualistic effects on its host that include manipulating the host reproductive systems in order to increase their transmission through the female germline, and increasing the host fitness. One of the mechanisms, promoting adaptation in biological organisms, is a non-specific neuroendocrine stress reaction. In insects, this reaction includes catecholamines, dopamine, serotonin and octopamine, which act as neurotransmitters, neuromodulators and neurohormones. The level of dopamine metabolism correlates with heat stress resistance in Drosophila adults. Results To examine Wolbachia effect on Drosophila survival under heat stress and dopamine metabolism we used five strains carrying the nuclear background of interbred Bi90 strain and cytoplasmic backgrounds with different genotype variants of Wolbachia (produced by 20 backcrosses of Bi90 males with appropriate source of Wolbachia). Non-infected Bi90 strain (treated with tetracycline for 3 generations) was used as a control group. We demonstrated that two of five investigated Wolbachia variants promote changes in Drosophila heat stress resistance and activity of enzymes that produce and degrade dopamine, alkaline phosphatase and dopamine-dependent arylalkylamine N-acetyltransferase. What is especially interesting, wMelCS genotype of Wolbachia increases stress resistance and the intensity of dopamine metabolism, whereas wMelPop strain decreases them. wMel, wMel2 and wMel4 genotypes of Wolbachia do not show any effect on the survival under heat stress or dopamine metabolism. L-DOPA treatment, known to increase the dopamine content in Drosophila, levels the difference in survival under heat stress between all studied groups. Conclusions The genotype of symbiont determines the effect that the symbiont has on the stress resistance of the host insect

    Fitness Analysis and Transcriptome Profiling Following Repeated Mild Heat Stress of Varying Frequency in Drosophila melanogaster Females

    No full text
    Understanding how repeated stress affects metabolic and physiological functions in the long run is of crucial importance for evaluating anthropogenic pressure on the environment. We investigated fertility, longevity and metabolism in D. melanogaster females exposed to short-term heat stress (38 °C, 1 h) repeated daily or weekly. Daily stress was shown to cause a significant decrease in both fertility and longevity, as well as in body mass and triglyceride (fat) content, but a significant increase in trehalose and glucose content. Weekly stress did not affect longevity and carbohydrate metabolism but resulted in a significant decrease in body mass and fat content. Weekly stress did not affect the total level of fertility, despite sharp fertility drops on the exact days of stressing. However, stressing insects weekly, only in the first two weeks after eclosion, caused a significant increase in the total level of fertility. The analysis of differentially expressed genes in the fat bodies and adjacent tissues of researched groups with the use of RNA-Seq profiling revealed changes in signal pathways related to proteolysis/digestion, heat shock protein 23, and in the tightly linked stress-inducible humoral factor Turandot gene network
    corecore