3,591 research outputs found

    Ventral-stream-like shape representation : from pixel intensity values to trainable object-selective COSFIRE models

    Get PDF
    Keywords: hierarchical representation, object recognition, shape, ventral stream, vision and scene understanding, robotics, handwriting analysisThe remarkable abilities of the primate visual system have inspired the construction of computational models of some visual neurons. We propose a trainable hierarchical object recognition model, which we call S-COSFIRE (S stands for Shape and COSFIRE stands for Combination Of Shifted FIlter REsponses) and use it to localize and recognize objects of interests embedded in complex scenes. It is inspired by the visual processing in the ventral stream (V1/V2 → V4 → TEO). Recognition and localization of objects embedded in complex scenes is important for many computer vision applications. Most existing methods require prior segmentation of the objects from the background which on its turn requires recognition. An S-COSFIRE filter is automatically configured to be selective for an arrangement of contour-based features that belong to a prototype shape specified by an example. The configuration comprises selecting relevant vertex detectors and determining certain blur and shift parameters. The response is computed as the weighted geometric mean of the blurred and shifted responses of the selected vertex detectors. S-COSFIRE filters share similar properties with some neurons in inferotemporal cortex, which provided inspiration for this work. We demonstrate the effectiveness of S-COSFIRE filters in two applications: letter and keyword spotting in handwritten manuscripts and object spotting in complex scenes for the computer vision system of a domestic robot. S-COSFIRE filters are effective to recognize and localize (deformable) objects in images of complex scenes without requiring prior segmentation. They are versatile trainable shape detectors, conceptually simple and easy to implement. The presented hierarchical shape representation contributes to a better understanding of the brain and to more robust computer vision algorithms.peer-reviewe

    Trainable COSFIRE filters for vessel delineation with application to retinal images

    Get PDF
    Retinal imaging provides a non-invasive opportunity for the diagnosis of several medical pathologies. The automatic segmentation of the vessel tree is an important pre-processing step which facilitates subsequent automatic processes that contribute to such diagnosis. We introduce a novel method for the automatic segmentation of vessel trees in retinal fundus images. We propose a filter that selectively responds to vessels and that we call B-COSFIRE with B standing for bar which is an abstraction for a vessel. It is based on the existing COSFIRE (Combination Of Shifted Filter Responses) approach. A B-COSFIRE filter achieves orientation selectivity by computing the weighted geometric mean of the output of a pool of Difference-of-Gaussians filters, whose supports are aligned in a collinear manner. It achieves rotation invariance efficiently by simple shifting operations. The proposed filter is versatile as its selectivity is determined from any given vessel-like prototype pattern in an automatic configuration process. We configure two B-COSFIRE filters, namely symmetric and asymmetric, that are selective for bars and bar-endings, respectively. We achieve vessel segmentation by summing up the responses of the two rotation-invariant B-COSFIRE filters followed by thresholding. The results that we achieve on three publicly available data sets (DRIVE: Se = 0.7655, Sp = 0.9704; STARE: Se = 0.7716, Sp = 0.9701; CHASE_DB1: Se = 0.7585, Sp = 0.9587) are higher than many of the state-of-the-art methods. The proposed segmentation approach is also very efficient with a time complexity that is significantly lower than existing methods.peer-reviewe

    Detection of retinal vascular bifurcations by rotation-, scale- and reflection-invariant COSFIRE filters

    Get PDF

    Quality Assessment Criteria and Their Role in the Development of a Successful Educational Project Proposal

    Get PDF
    The paper suggests an analysis of data concerning 306 educational project proposals submitted for European funding in 2013. Several fundamental questions regarding the role of the evaluation for achieving European ideas and goals when financing projects in education area are posed and answers have been provided. The hypothesis that the actual assessment confirms the objectives of the EU is discussed against the alternative that this assessment changes the focus of EU funding. Another natural question that finds an answer in the present work is “How to plan the preparation of the project proposal with a view to optimize its effectiveness and the expected results?” The data is analysed by the methods of histogram analysis, principal component analysis,cross-covariance, correlation and variation analysis, Hilbert’s transform, as well as graph’s theory techniques

    Detection of retinal vascular bifurcations by trainable v4-like filters

    Get PDF
    The detection of vascular bifurcations in retinal fundus images is important for finding signs of various cardiovascular diseases. We propose a novel method to detect such bifurcations. Our method is implemented in trainable filters that mimic the properties of shape-selective neurons in area V4 of visual cortex. Such a filter is configured by combining given channels of a bank of Gabor filters in an AND-gate-like operation. Their selection is determined by the automatic analysis of a bifurcation feature that is specified by the user from a training image. Consequently, the filter responds to the same and similar bifurcations. With only 25 filters we achieved a correct detection rate of 98.52% at a precision rate of 95.19% on a set of 40 binary fundus images, containing more than 5000 bifurcations. In principle, all vascular bifurcations can be detected if a sufficient number of filters are configured and used.peer-reviewe

    Vessels delineation in retinal images using COSFIRE filters

    Get PDF
    Retinal image analysis is widely used in the medical community to diagnose several pathologies. The automatic analysis of such images is important to perform more ef-ficient diagnosis. We propose an effective method for the delineation of blood vessels in retinal images using train-able bar-selective COSFIRE filters. The results that we achieve on three publicly available data sets (DRIVE: Se = 0.7655, Sp = 0.9704; STARE: Se = 0.7763, Sp = 0.9695; CHASE DB1: Se = 0.7699, Sp = 0.9476) demonstrate the effectiveness of the proposed approach.peer-reviewe

    A framework for feature selection through boosting

    Get PDF
    As dimensions of datasets in predictive modelling continue to grow, feature selection becomes increasingly practical. Datasets with complex feature interactions and high levels of redundancy still present a challenge to existing feature selection methods. We propose a novel framework for feature selection that relies on boosting, or sample re-weighting, to select sets of informative features in classification problems. The method uses as its basis the feature rankings derived from fast and scalable tree-boosting models, such as XGBoost. We compare the proposed method to standard feature selection algorithms on 9 benchmark datasets. We show that the proposed approach reaches higher accuracies with fewer features on most of the tested datasets, and that the selected features have lower redundancy
    corecore