4,444 research outputs found

    Scale Invariant Cosmology

    Get PDF
    An attempt is made here to extend to the microscopic domain the scale invariant character of gravitation - which amounts to consider expansion as applying to any physical scale. Surprisingly, this hypothesis does not prevent the redshift from being obtained. It leads to strong restrictions concerning the choice between the presently available cosmological models and to new considerations about the notion of time. Moreover, there is no horizon problem and resorting to inflation is not necessary.Comment: TeX, 20 page

    Eddies and interface deformations induced by optical streaming

    Full text link
    We study flows and interface deformations produced by the scattering of a laser beam propagating through non-absorbing turbid fluids. Light scattering produces a force density resulting from the transfer of linear momentum from the laser to the scatterers. The flow induced in the direction of the beam propagation, called 'optical streaming', is also able to deform the interface separating the two liquid phases and to produce wide humps. The viscous flow taking place in these two liquid layers is solved analytically, in one of the two liquid layers with a stream function formulation, as well as numerically in both fluids using a boundary integral element method. Quantitative comparisons are shown between the numerical and analytical flow patterns. Moreover, we present predictive simulations regarding the effects of the geometry, of the scattering strength and of the viscosities, on both the flow pattern and the deformation of the interface. Finally, theoretical arguments are put forth to explain the robustness of the emergence of secondary flows in a two-layer fluid system
    corecore