19 research outputs found

    NADPH Oxidases (NOX): An Overview from Discovery, Molecular Mechanisms to Physiology and Pathology

    Get PDF
    The reactive oxygen species (ROS)-producing enzyme NADPH oxidase (NOX) was first identified in the membrane of phagocytic cells. For many years, its only known role was in immune defense, where its ROS production leads to the destruction of pathogens by the immune cells. NOX from phagocytes catalyzes, via one-electron trans-membrane transfer to molecular oxygen, the production of the superoxide anion. Over the years, six human homologs of the catalytic subunit of the phagocyte NADPH oxidase were found: NOX1, NOX3, NOX4, NOX5, DUOX1, and DUOX2. Together with the NOX2/gp91 component present in the phagocyte NADPH oxidase assembly itself, the homologs are now referred to as the NOX family of NADPH oxidases. NOX are complex multidomain proteins with varying requirements for assembly with combinations of other proteins for activity. The recent structural insights acquired on both prokaryotic and eukaryotic NOX open new perspectives for the understanding of the molecular mechanisms inherent to NOX regulation and ROS production (superoxide or hydrogen peroxide). This new structural information will certainly inform new investigations of human disease. As specialized ROS producers, NOX enzymes participate in numerous crucial physiological processes, including host defense, the post-translational processing of proteins, cellular signaling, regulation of gene expression, and cell differentiation. These diversities of physiological context will be discussed in this review. We also discuss NOX misregulation, which can contribute to a wide range of severe pathologies, such as atherosclerosis, hypertension, diabetic nephropathy, lung fibrosis, cancer, or neurodegenerative diseases, giving this family of membrane proteins a strong therapeutic interest

    The crystal structure of the anti-σ factor CnrY in complex with the σ factor CnrH shows a new structural class of anti-σ factors targeting extracytoplasmic function σ factors.

    No full text
    International audienceGene expression in bacteria is regulated at the level of transcription initiation, a process driven by σ factors. The regulation of σ factor activity proceeds from the regulation of their cytoplasmic availability, which relies on specific inhibitory proteins called anti-σ factors. With anti-σ factors regulating their availability according to diverse cues, extracytoplasmic function σ factors (σ(ECF)) form a major signal transduction system in bacteria. Here, structure:function relationships have been characterized in an emerging class of minimal-size transmembrane anti-σ factors, using CnrY from Cupriavidus metallidurans CH34 as a model. This study reports the 1.75-Å-resolution structure of CnrY cytosolic domain in complex with CnrH, its cognate σ(ECF), and identifies a small hydrophobic knob in CnrY as the major determinant of this interaction in vivo. Unsuspected structural similarity with the molecular switch regulating the general stress response in α-proteobacteria unravels a new class of anti-σ factors targeting σ(ECF). Members of this class carry out their function via a 30-residue stretch that displays helical propensity but no canonical structure on its own

    Evidence for Conformational Changes upon Copper Binding to Cupriavidus metallidurans CzcE

    No full text
    International audienceCzcE is a periplasmic protein from Cupriavidus metallidurans CH34 that can bind four copper atoms per dimer. We have crystallized the apo form of the protein and determined its structure at 1.85 A ° resolution. Three Cu atoms were localized by soaking apo-CzcE crystals into a CuCl2 solution. We identified His24 as a Cu(II) ligand in each protomer and Asp100 as a key residue for Cu binding at the interface of the dimer. The role of these amino acids was confirmed by site-directed mutagenesis and UV-visible spectroscopy. The fourth Cu atom was not located. The oxidized form of CzcE contains four Cu(II) atoms, while the reduced form contains four Cu(I) atoms. Average coordination spheres of four N or O atoms for Cu(II) and of oneNorOatom and two S atoms for Cu(I) were determined by X-ray absorption spectroscopy. As there is no evidence for preformed metal-binding sites in apo-CzcE, we suggest that different conformational changes occurred upon Cu(II) or Cu(I) binding. These changes were further demonstrated by digestion experiments that gave different proteolysis patterns depending not only on the presence of the metal but also on its speciation. The ability of CzcE to bind copper and to adapt its conformation to different copper oxidation states could be related to a role in copper sensing for this protein

    The X-ray structure of NccX from Cupriavidus metallidurans 31A illustrates potential dangers of detergent solubilization when generating and interpreting crystal structures of membrane proteins.

    No full text
    International audienceThe x-ray structure of NccX, a type II transmembrane metal sensor, from Cupriavidus metallidurans 31A has been determined at a resolution of 3.12 Å. This was achieved after solubilization by dodecylphosphocholine and purification in the presence of the detergent. NccX crystal structure did not match the model based on the extensively characterized periplasmic domain of its closest homologue CnrX. Instead, the periplasmic domains of NccX appeared collapsed against the hydrophobic transmembrane segments, leading to an aberrant topology incompatible with membrane insertion. This was explained by a detergent-induced redistribution of the hydrophobic interactions among the transmembrane helices and a pair of hydrophobic patches keeping the periplasmic domains together in the native dimer. Molecular dynamics simulations performed with the full-length protein or with the transmembrane segments were used along with in vivo homodimerization assays (TOXCAT) to evaluate the determinants of the interactions between NccX protomers. Taken as a whole, computational and experimental results are in agreement with the structural model of CnrX where a cradle-shaped periplasmic metal sensor domain is anchored into the inner membrane by two N-terminal helices. In addition, they show that the main determinant of NccX dimerization is the periplasmic soluble domain and that the interaction between transmembrane segments is highly dynamic. The present work introduces a new crystal structure for a transmembrane protein and, in line with previous studies, substantiates the use of complementary theoretical and in vivo investigations to rationalize a three-dimensional structure obtained in non-native conditions

    Monovalent mannose-based DC-SIGN antagonists: targeting the hydrophobic groove of the receptor.

    No full text
    International audienceDendritic cell-specific, intercellular adhesion molecule-3-grabbing non-integrin (DC-SIGN) is a C-type lectin expressed specifically on dendritic cells. It is a primary site for recognition and binding of various pathogens and thus a promising therapeutic target for inhibition of pathogen entry and subsequent prevention of immune defense cell infection. We report the design and synthesis of d-mannose-based DC-SIGN antagonists bearing diaryl substituted 1,3-diaminopropanol or glycerol moieties incorporated to target the hydrophobic groove of the receptor. The designed glycomimetics were evaluated by in vitro assay of the isolated DC-SIGN extracellular domain for their ability to compete with HIV-1 gp120 for binding to the DC-SIGN carbohydrate recognition domain. Compounds 14d and 14e, that display IC50 values of 40 μM and 50 μM, are among the most potent monovalent DC-SIGN antagonists reported. The antagonistic effect of all the synthesized compounds was further evaluated by a one-point in vitro assay that measures DC adhesion. Compounds 14d, 14e, 18d and 18e were shown to act as functional antagonists of DC-SIGN-mediated DC adhesion. The binding mode of 14d was also studied by molecular docking and molecular dynamics simulation, which revealed flexibility of 14d in the binding site and provides a basis for further optimization

    Structural Basis for Metal Sensing by CnrX

    No full text
    International audienceCnrX is the metal sensor and signal modulator of the three-protein transmembrane signal transduction complex CnrYXH of Cupriavidus metallidurans CH34 that is involved in the setup of cobalt and nickel resistance. We have determined the atomic structure of the soluble domain of CnrX in its Ni-bound, Co-bound, or Zn-bound form. Ni and Co ions elicit a biological response, while the Zn-bound form is inactive. The structures presented here reveal the topology of intraprotomer and interprotomer interactions and the ability of metal-binding sites to fine-tune the packing of CnrX dimer as a function of the bound metal. These data suggest an allosteric mechanism to explain how the complex is switched on and how the signal is modulated by Ni or Co binding. These results provide clues to propose a model for signal propagation through the membrane in the complex

    Biophysical and physiological characterization of ZraP from Escherichia coli, the periplasmic accessory protein of the atypical ZraSR two-component system.

    No full text
    International audienceThe ZraSR system belongs to the family of TCSs (two-component signal transduction systems). In Escherichia coli, it was proposed to participate in zinc balance and to protect cytoplasmic zinc overload by sequestering this metal ion into the periplasm. This system controls the expression of the accessory protein ZraP that would be a periplasmic zinc scavenger. ZraPSR is functionally homologous with CpxPAR that integrates signals of envelope perturbation, including misfolded periplasmic proteins. The auxiliary periplasmic regulator CpxP inhibits the Cpx pathway by interacting with CpxA. Upon envelope stress sensing, the inhibitory function of CpxP is relieved, resulting in CpxR activation. Similarly to CpxPAR, ZraPSR probably plays a role in envelope stress response as a zinc-dependent chaperone activity was demonstrated for ZraP in Salmonella. We have purified ZraP from E. coli and shown that it is an octamer containing four interfacial metal-binding sites contributing to dimer stability. These sites are located close to the N-terminus, whereas the C-terminus is involved in polymerization of the protein to form a tetramer of dimers. In vitro, ZraP binds copper with a higher affinity than zinc and displays chaperone properties partially dependent on zinc binding. In vivo, zinc-bound ZraP is a repressor of the expression of the zraPSR operon. However, we have demonstrated that none of the Zra proteins are involved in zinc or copper resistance. We propose an integrated mechanism in which zinc is a marker of envelope stress perturbation and ZraPSR TCS is a sentinel sensing and responding to zinc entry into the periplasm

    Interdomain Flexibility within NADPH Oxidase Suggested by SANS Using LMNG Stealth Carrier

    Get PDF
    Small angle neutron scattering (SANS) provides a method to obtain important low-resolution information for integral membrane proteins (IMPs), challenging targets for structural determination. Specific deuteration furnishes a stealth carrier for the solubilized IMP. We used SANS to determine a structural envelope of SpNOX, the Streptococcus pneumoniae NADPH oxidase (NOX), a prokaryotic model system for exploring structure and function of eukaryotic NOXes. SpNOX was solubilized in the detergent lauryl maltose neopentyl glycol, which provides optimal SpNOX stability and activity. Using deuterated solvent and protein, the lauryl maltose neopentyl glycol was experimentally undetected in SANS. This affords a cost-effective SANS approach for obtaining novel structural information on IMPs. Combining SANS data with molecular modeling provided a first, to our knowledge, structural characterization of an entire NOX enzyme. It revealed a distinctly less compact structure than that predicted from the docking of homologous crystal structures of the separate transmembrane and dehydrogenase domains, consistent with a flexible linker connecting the two domains

    Sequencing intact membrane proteins using MALDI mass spectrometry

    No full text
    Membrane proteins are key players in many cellular events and represent crucial drug targets. Matrix-assisted laser desorption ionization mass spectrometry (MALDI MS) is a valuable approach to investigate them. To our knowledge, there are only a few reports of sequencing small membrane proteins using MALDI in-source decay (ISD). We report the successful fragmentation and sequencing of membrane proteins up to 46 kDa by MALDI-ISD. We have 1) investigated key MALDI parameters that influence the sequencing of a soluble protein; 2) used atomic force microscopy to observe our samples and correlate their topological features with MALDI data, which allowed us to optimize fragmentation conditions; 3) sequenced N- and C-termini of three membrane proteins (SpoIIIAF, TIM23, and NOX), solubilized in three different ways. Our results indicate that detergent and buffer type are of key importance for successful MALDI-ISD sequencing. Our findings are significant because sequencing membrane proteins enables the unique characterization of challenging biomolecules. The resulting fragmentation patterns provide key insights into the identity of proteins, their sequences, modifications, and other crucial information, such as the position of unexpected truncation
    corecore