11,742 research outputs found
Fast and Compact Distributed Verification and Self-Stabilization of a DFS Tree
We present algorithms for distributed verification and silent-stabilization
of a DFS(Depth First Search) spanning tree of a connected network. Computing
and maintaining such a DFS tree is an important task, e.g., for constructing
efficient routing schemes. Our algorithm improves upon previous work in various
ways. Comparable previous work has space and time complexities of bits per node and respectively, where is the highest
degree of a node, is the number of nodes and is the diameter of the
network. In contrast, our algorithm has a space complexity of bits
per node, which is optimal for silent-stabilizing spanning trees and runs in
time. In addition, our solution is modular since it utilizes the
distributed verification algorithm as an independent subtask of the overall
solution. It is possible to use the verification algorithm as a stand alone
task or as a subtask in another algorithm. To demonstrate the simplicity of
constructing efficient DFS algorithms using the modular approach, We also
present a (non-sielnt) self-stabilizing DFS token circulation algorithm for
general networks based on our silent-stabilizing DFS tree. The complexities of
this token circulation algorithm are comparable to the known ones
The different origins of magnetic fields and activity in the Hertzsprung gap stars, OU Andromedae and 31 Comae
Context: When crossing the Hertzsprung gap, intermediate-mass stars develop a
convective envelope. Fast rotators on the main sequence, or Ap star
descendants, are expected to become magnetic active subgiants during this
evolutionary phase. Aims: We compare the surface magnetic fields and activity
indicators of two active, fast rotating red giants with similar masses and
spectral class but diferent rotation rates - OU And (Prot=24.2 d) and 31 Com
(Prot=6.8 d) - to address the question of the origin of their magnetism and
high activity.
Methods: Observations were carried out with the Narval spectropolarimeter in
2008 and 2013.We used the least squares deconvolution technique to extract
Stokes V and I profiles to detect Zeeman signatures of the magnetic field of
the stars. We provide Zeeman-Doppler imaging, activity indicator monitoring,
and a precise estimation of stellar parameters. We use stellar evolutionary
models to infer the evolutionary status and the initial rotation velocity on
the main sequence.
Results: The detected magnetic field of OU And is a strong one. Its
longitudinal component Bl reaches 40 G and presents an about sinusoidal
variation with reversal of the polarity. The magnetic topology of OU And is
dominated by large scale elements and is mainly poloidal with an important
dipole component, and a significant toroidal component. The detected magnetic
field of 31 Com is weaker, with a magnetic map showing a more complex field
geometry, and poloidal and toroidal components of equal contributions. The
evolutionary models show that the progenitors of OU And and 31 Com must have
been rotat
Conclusions: OU And appears to be the probable descendant of a magnetic Ap
star, and 31 Com the descendant of a relatively fast rotator on the main
sequence.Comment: 16 pages, 12 figure
Intestinal absorption of macromolecules during viral enteritis: an experimental study on rotavirus-infected conventional and germ-free mice.
Epithelial transport and degradation of horseradish peroxidase (HRP), a macromolecular tracer, was studied in conventional and germ-free suckling mice following an experimental infection with rotavirus. Conventional and germ-free mice developed diarrhea from days 2 to 8 postinfection (pi), with growth failure. In mucosal homogenates, infectious virus detected by immunofluorescence on MA 104 cells was present from day 2 through day 8 pi in germ-free mice, but persisted longer (day 13 pi) in conventional mice. Only mild histological lesions were observed during diarrhea, but obvious macrovacuolation of epithelial cells and increased cellular density occurred during the convalescence period (days 9 to 13 pi). Intact and degraded HRP fluxes from mucosa to serosa were measured in vitro on segments of jejunum mounted in Ussing chambers. Both groups of mice developed increased HRP permeability during the experimental period, but at different times after inoculation: during the diarrheal period (days 2 and 3 pi) conventional mouse epithelium absorbed five times more HRP than noninfected controls and during the convalescence period (days 9 to 13 pi) HRP absorption in germ-free mice rose 10-fold as compared to its level before infection. In both cases, this increase in HRP permeability was entirely due to an increase in intact HRP absorption, probably via a transcellular route, and occurred without any alteration in degraded HRP transport. These results indicate that in mice, rotavirus infection causes a transient rise in gut permeability to undegraded proteins. The intestinal microflora seems to affect the timing, magnitude, and duration of this increased permeability
Exploring the origin of neutron star magnetic field: magnetic properties of the progenitor OB stars
Ferrario & Wickramasinghe (2006) explored the hypothesis that the magnetic
fields of neutron stars are of fossil origin. In this context, they predicted
the field distribution of the progenitor OB stars, finding that 5 per cent of
main sequence massive stars should have fields in excess of 1kG. We have
carried out sensitive ESPaDOnS spectropolarimetric observations to search for
direct evidence of such fields in all massive B- and O-type stars in the Orion
Nebula Cluster star-forming region. We have detected unambiguous Stokes V
Zeeman signatures in spectra of three out of the eight stars observed (38%).
Using a new state-of-the-art Bayesian analysis, we infer the presence of strong
(kG), organised magnetic fields in their photospheres. For the remaining five
stars, we constrain any dipolar fields in the photosphere to be weaker than
about 200G. Statistically, the chance of finding three ~kG fields in a sample
of eight OB stars is quite low (less than 1%) if the predictions of Ferrario &
Wickramasinghe are correct. This implies that either the magnetic fields of
neutron stars are not of fossil origin, that the flux-evolution model of
Ferrario & Wickramasinghe is incomplete, or that the ONC has unusual magnetic
properties. We are undertaking a study of other young star clusters, in order
to better explore these possibilities.Comment: 40 Years of Pulsars conference: Millisecond Pulsars, Magnetars and
More. McGill University, Montreal, Canada, August 12-17, 2007. 5 pages, 4
figure
- âŠ