353 research outputs found

    A note on Duffin-Kemmer-Petiau equation in (1+1) space-time dimensions

    Get PDF
    In the last years several papers addressed the supposed spin-1 sector of the massive Duffin-Kemmer-Petiau (DKP) equation restricted to (1+1) space-time dimensions. In this note we show explicitly that this is a misleading approach, since the DKP algebra in (1+1) dimensions admits only a spin-0 representation. Our result also is useful to understand why several recent papers found coincident results for both spin-0 and spin-1 sectors of the DKP theory in (3+1) dimensions when the dynamics is restricted to one space dimension.Comment: 3 pages, no figure

    Scattering and bound states of spin-0 particles in a nonminimal vector double-step potential

    Full text link
    The problem of spin-0 particles subject to a nonminimal vector double-step potential is explored in the context of the Duffin-Kemmer-Petiau theory. Surprisingly, one can never have an incident wave totally reflected and the transmission amplitude has complex poles corresponding to bound states. The interesting special case of bosons embedded in a sign potential with its unique bound-state solution is analyzed as a limiting case.Comment: 1 figur

    Relativistic corrections for two- and three-body flux tube model

    Full text link
    We generalize the relativistic flux tube model for arbitrary two- or three-body systems. The spin-independent and spin-dependent contributions of the flux tube to the total Hamiltonian are computed in perturbation. In particular, we show that the spin-dependent part exhibits a universal spin-orbit form: It does not depend on the nature of the confined particles. The general equations we present, being well-defined for light particles, can thus be applied to usual as well as exotic hadrons such as hybrid mesons and glueballs.Comment: 10 pages; v2 accepted for publication (minor changes

    Exact Solutions of the Duffin Kemmer Petiau Equation for the Deformed Hulthen Potential

    Full text link
    Using the Nikiforov Uvarov method, an application of the relativistic Duffin Kemmer Petiau equation in the presence of a deformed Hulthen potential is presented for spin zero particles. We derived the first order coupled differential radial equations which enable the energy eigenvalues as well as the full wavefunctions to be evaluated by using of the Nikiforov Uvarov method that can be written in terms of the hypergeometric polynomials.Comment: 8 pages. submitted to Physica Script

    Absence of Klein's paradox for massive bosons coupled by nonminimal vector interactions

    Full text link
    A few properties of the nonminimal vector interactions in the Duffin-Kemmer-Petiau theory are revised. In particular, it is shown that the space component of the nonminimal vector interaction plays a peremptory role for confining bosons whereas its time component contributes to the leakage. Scattering in a square step potential with proper boundary conditions is used to show that Klein's paradox does not manifest in the case of a nonminimal vector coupling

    Zitterbewegung of Klein-Gordon particles and its simulation by classical systems

    Full text link
    The Klein-Gordon equation is used to calculate the Zitterbewegung (ZB, trembling motion) of spin-zero particles in absence of fields and in the presence of an external magnetic field. Both Hamiltonian and wave formalisms are employed to describe ZB and their results are compared. It is demonstrated that, if one uses wave packets to represent particles, the ZB motion has a decaying behavior. It is also shown that the trembling motion is caused by an interference of two sub-packets composed of positive and negative energy states which propagate with different velocities. In the presence of a magnetic field the quantization of energy spectrum results in many interband frequencies contributing to ZB oscillations and the motion follows a collapse-revival pattern. In the limit of non-relativistic velocities the interband ZB components vanish and the motion is reduced to cyclotron oscillations. The exact dynamics of a charged Klein-Gordon particle in the presence of a magnetic field is described on an operator level. The trembling motion of a KG particle in absence of fields is simulated using a classical model proposed by Morse and Feshbach -- it is shown that a variance of a Gaussian wave packet exhibits ZB oscillations.Comment: 16 pages and 7 figure

    Relativistic Aharonov-Casher Phase in Spin One

    Get PDF
    The Aharonov-Casher (AC) phase is calculated in relativistic wave equations of spin one. The AC phase has previously been calculated from the Dirac-Pauli equation using a gauge-like technique \cite{MK1,MK2}. In the spin-one case, we use Kemmer theory (a Dirac-like particle theory) to calculate the phase in a similar manner. However the vector formalism, the Proca theory, is more widely known and used. In the presence of an electromagnetic field, the two theories are `equivalent' and may be transformed into one another. We adapt these transformations to show that the Kemmer theory results apply to the Proca theory. Then we calculate the Aharonov-Casher phase for spin-one particles directly in the Proca formalism.Comment: 12 page

    On Equivalence of Duffin-Kemmer-Petiau and Klein-Gordon Equations

    Get PDF
    A strict proof of equivalence between Duffin-Kemmer-Petiau (DKP) and Klein-Gordon (KG) theories is presented for physical S-matrix elements in the case of charged scalar particles interacting in minimal way with an external or quantized electromagnetic field. First, Hamiltonian canonical approach to DKP theory is developed in both component and matrix form. The theory is then quantized through the construction of the generating functional for Green functions (GF) and the physical matrix elements of S-matrix are proved to be relativistic invariants. The equivalence between both theories is then proved using the connection between GF and the elements of S-matrix, including the case of only many photons states, and for more general conditions - so called reduction formulas of Lehmann, Symanzik, Zimmermann.Comment: 23 pages, no figures, requires macro tcilate

    An effective singular oscillator for Duffin-Kemmer-Petiau particles with a nonminimal vector coupling: a two-fold degeneracy

    Full text link
    Scalar and vector bosons in the background of one-dimensional nonminimal vector linear plus inversely linear potentials are explored in a unified way in the context of the Duffin-Kemmer-Petiau theory. The problem is mapped into a Sturm-Liouville problem with an effective singular oscillator. With boundary conditions emerging from the problem, exact bound-state solutions in the spin-0 sector are found in closed form and it is shown that the spectrum exhibits degeneracy. It is shown that, depending on the potential parameters, there may or may not exist bound-state solutions in the spin-1 sector.Comment: 1 figure. arXiv admin note: substantial text overlap with arXiv:1009.159
    • …
    corecore