44 research outputs found
A class of fast exact Bayesian filters in dynamical models with jumps
In this paper, we focus on the statistical filtering problem in dynamical
models with jumps. When a particular application relies on physical properties
which are modeled by linear and Gaussian probability density functions with
jumps, an usualmethod consists in approximating the optimal Bayesian estimate
(in the sense of the Minimum Mean Square Error (MMSE)) in a linear and Gaussian
Jump Markov State Space System (JMSS). Practical solutions include algorithms
based on numerical approximations or based on Sequential Monte Carlo (SMC)
methods. In this paper, we propose a class of alternative methods which
consists in building statistical models which share the same physical
properties of interest but in which the computation of the optimal MMSE
estimate can be done at a computational cost which is linear in the number of
observations.Comment: 21 pages, 7 figure
Semi-independent resampling for particle filtering
Among Sequential Monte Carlo (SMC) methods,Sampling Importance Resampling
(SIR) algorithms are based on Importance Sampling (IS) and on some
resampling-based)rejuvenation algorithm which aims at fighting against weight
degeneracy. However %whichever the resampling technique used this mechanism
tends to be insufficient when applied to informative or high-dimensional
models. In this paper we revisit the rejuvenation mechanism and propose a class
of parameterized SIR-based solutions which enable to adjust the tradeoff
between computational cost and statistical performances
Independent Resampling Sequential Monte Carlo Algorithms
Sequential Monte Carlo algorithms, or Particle Filters, are Bayesian
filtering algorithms which propagate in time a discrete and random
approximation of the a posteriori distribution of interest. Such algorithms are
based on Importance Sampling with a bootstrap resampling step which aims at
struggling against weights degeneracy. However, in some situations (informative
measurements, high dimensional model), the resampling step can prove
inefficient. In this paper, we revisit the fundamental resampling mechanism
which leads us back to Rubin's static resampling mechanism. We propose an
alternative rejuvenation scheme in which the resampled particles share the same
marginal distribution as in the classical setup, but are now independent. This
set of independent particles provides a new alternative to compute a moment of
the target distribution and the resulting estimate is analyzed through a CLT.
We next adapt our results to the dynamic case and propose a particle filtering
algorithm based on independent resampling. This algorithm can be seen as a
particular auxiliary particle filter algorithm with a relevant choice of the
first-stage weights and instrumental distributions. Finally we validate our
results via simulations which carefully take into account the computational
budget
Comparing the modeling powers of RNN and HMM
International audienceRecurrent Neural Networks (RNN) and Hidden Markov Models (HMM) are popular models for processing sequential data and have found many applications such as speech recognition, time series prediction or machine translation. Although both models have been extended in several ways (eg. Long Short Term Memory and Gated Recurrent Unit architec-tures, Variational RNN, partially observed Markov models.. .), their theoretical understanding remains partially open. In this context, our approach consists in classifying both models from an information geometry point of view. More precisely, both models can be used for modeling the distribution of a sequence of random observations from a set of latent variables; however, in RNN, the latent variable is deterministically deduced from the current observation and the previous latent variable, while, in HMM, the set of (random) latent variables is a Markov chain. In this paper, we first embed these two generative models into a generative unified model (GUM). We next consider the subclass of GUM models which yield a stationary Gaussian observations probability distribution function (pdf). Such pdf are characterized by their covariance sequence; we show that the GUM model can produce any stationary Gaussian distribution with geometrical covariance structure. We finally discuss about the modeling power of the HMM and RNN submodels, via their associated observations pdf: some observations pdf can be modeled by a RNN, but not by an HMM, and vice versa; some can be produced by both structures, up to a re-parameterization
Spatio-temporal convolutional neural networks for failure prediction
International audienceThe use of statistical learning techniques to identify a failure in a system by using time series collected from it is well known. However, in the case of an industrial system made of multiple subsystems, their direct application is limited by the system complexity. In the meantime, the application of those techniques individually to each subsystem does not take their dependencies into consideration leading to limited performances. The objective of this paper is to propose a model of spatio-temporal convolutional neural network able to consider spatial and temporal dependencies on time series collected on subsystems of an industrial system for failure classification.L'utilisation de techniques d'apprentissage statistique pour identifier une panne au sein d'un système à partir de séries temporelles intrinsèques à ce système est bien connu. Néanmoins, dans le cadre d'un système industriel composé de plusieurs sous systèmes, l'application directe de ces techniques au système global est limitée par la complexité de celui-ci, tandis que leur application sur chacun des sous systèmes ne prend pas en compte les dépendances qui peuvent intervenir entre eux et mènent à des performances faibles. L'objectif de cette communication est de proposer un modèle de réseau de neurones convolutionnels spatio-temporels capable de prendre en compte à la fois des dépendances spatiales et temporelles de séries temporelles observées par des sous systèmes pour la classification de pannes dans un système industriel
Variance estimation for Sequential Monte Carlo Algorithms: a backward sampling approach
In this paper, we consider the problem of online asymptotic variance
estimation for particle filtering and smoothing. Current solutions for the
particle filter rely on the particle genealogy and are either unstable or hard
to tune in practice. We propose to mitigate these limitations by introducing a
new estimator of the asymptotic variance based on the so called backward
weights. The resulting estimator is weakly consistent and trades computational
cost for more stability and reduced variance. We also propose a more
computationally efficient estimator inspired by the PaRIS algorithm of Olsson &
Westerborn. As an application, particle smoothing is considered and an
estimator of the asymptotic variance of the Forward Filtering Backward
Smoothing estimator applied to additive functionals is provided.Comment: preprin
Algorithmes de restauration bayésienne mono- et multi-objets dans des modèles markoviens
This thesis focuses on the Bayesian estimation problem for statistical filtering which consists in estimating hidden states from an historic of observations over time in a given stochastic model. The considered models include the popular Hidden Markov Chain models and the Jump Markov State Space Systems; in addition, the filtering problem is addressed under a general form, that is to say we consider the mono- and multi-object filtering problems. The latter one is addressed in the Random Finite Sets and Probability Hypothesis Density contexts. First, we focus on the class of particle filtering algorithms, which include essentially the sequential importance sampling and auxiliary particle filter algorithms. We explore the recursive loops for computing the filtering probability density function, and alternative particle filtering algorithms are proposed. The ``locally optimal'' filtering algorithms, i.e. the sequential importance sampling with optimal conditional importance distribution and the fully adapted auxiliary particle filtering algorithms, are statistically compared in function of the parameters of a given stochastic model. Next, variance reduction methods based on the Rao-Blackwell theorem are exploited in the mono- and multi-object filtering contexts. More precisely, these methods are mainly used in mono-object filtering when the dimension of the hidden state is large; so we first extend them for Monte Carlo approximations of the Probabilty Hypothesis Density filter. In addition, alternative variance reduction methods are proposed. Although we still use the Rao-Blackwell decomposition, our methods no longer focus on the spatial aspect of the problem but rather on its temporal one. Finally, we discuss on the extension of the classical stochastic models. We first recall pairwise and triplet Markov models and we illustrate their interest through several practical examples. We next address the multi-object filtering problem for such models in the random finite sets context. Moreover, the statistical properties of the more general triplet Markov models are used to build new approximations of the optimal Bayesian estimate (in the sense of the mean square error) in Jump Markov State Space Systems. These new approximations can produce estimates with performances alike those given by particle filters but with lower computational costCette thèse est consacrée au problème d'estimation bayésienne pour le filtrage statistique, dont l'objectif est d'estimer récursivement des états inconnus à partir d'un historique d'observations, dans un modèle stochastique donné. Les modèles stochastiques considérés incluent principalement deux grandes classes de modèles : les modèles de Markov cachés et les modèles de Markov à sauts conditionnellement markoviens. Ici, le problème est abordé sous sa forme générale dans la mesure où nous considérons le problème du filtrage mono- et multi objet(s), ce dernier étant abordé sous l'angle de la théorie des ensembles statistiques finis et du filtre « Probability Hypothesis Density ». Tout d'abord, nous nous intéressons à l'importante classe d'approximations que constituent les algorithmes de Monte Carlo séquentiel, qui incluent les algorithmes d'échantillonnage d'importance séquentiel et de filtrage particulaire auxiliaire. Les boucles de propagation mises en jeux dans ces algorithmes sont étudiées et des algorithmes alternatifs sont proposés. Les algorithmes de filtrage particulaire dits « localement optimaux », c'est à dire les algorithmes d'échantillonnage d'importance avec densité d'importance conditionnelle optimale et de filtrage particulaire auxiliaire pleinement adapté sont comparés statistiquement, en fonction des paramètres du modèle donné. Ensuite, les méthodes de réduction de variance basées sur le théorème de Rao-Blackwell sont exploitées dans le contexte du filtrage mono- et multi-objet(s) Ces méthodes, utilisées principalement en filtrage mono-objet lorsque la dimension du vecteur d'état à estimer est grande, sont dans un premier temps étendues pour les approximations Monte Carlo du filtre Probability Hypothesis Density. D'autre part, des méthodes de réduction de variance alternatives sont proposées : bien que toujours basées sur le théorème de Rao-Blackwell, elles ne se focalisent plus sur le caractère spatial du problème mais plutôt sur son caractère temporel. Enfin, nous abordons l'extension des modèles probabilistes classiquement utilisés. Nous rappelons tout d'abord les modèles de Markov couple et triplet dont l'intérêt est illustré à travers plusieurs exemples pratiques. Ensuite, nous traitons le problème de filtrage multi-objets, dans le contexte des ensembles statistiques finis, pour ces modèles. De plus, les propriétés statistiques plus générales des modèles triplet sont exploitées afin d'obtenir de nouvelles approximations de l'estimateur bayésien optimal (au sens de l'erreur quadratique moyenne) dans les modèles à sauts classiquement utilisés; ces approximations peuvent produire des estimateurs de performances comparables à celles des approximations particulaires, mais ont l'avantage d'être moins coûteuses sur le plan calculatoir