13 research outputs found

    In children, the microbiota of the nasopharynx and bronchoalveolar lavage fluid are both similar and different

    Get PDF
    RATIONALE: Sputum and bronchoalveolar lavage fluid (BALF) are often obtained to elucidate the lower airway microbiota in adults. Acquiring sputum samples from children is difficult and obtaining samples via bronchoscopy in children proves challenging due to the need for anesthesia and specialized procedural expertise; therefore nasopharyngeal (NP) swabs are often used as surrogates when investigating the pediatric airway microbiota. In adults, the airway microbiota differs significantly between NP and BALF samples however, minimal data exist in children. OBJECTIVES: To compare NP and BALF samples in children undergoing clinically indicated bronchoscopy. METHODS: NP and BALF samples were collected during clinically indicated bronchoscopy. Bacterial DNA was extracted from 72 samples (36 NP/BALF pairs); the bacterial V1-V3 region of the 16S rRNA gene was amplified and sequenced on the Illumina Miseq platform. Analysis was performed using mothur software. RESULTS: Compared to NP samples, BALF had increased richness and diversity. Similarity between paired NP and BALF (intra-subject) samples was greater than inter-subject samples (P = 0.0006). NP samples contained more Actinobacteria (2.2% vs 21%; adjusted P = 1.4 × 10-6 ), while BALF contained more Bacteroidetes (29.5% vs 3.2%; adjusted P = 1.2 × 10-9 ). At the genus level several differences existed, however Streptococcus abundance was similar in both sample types (NP 37.3% vs BAL 36.1%; adjusted P = 0.8). CONCLUSION: Our results provide evidence that NP samples can be used to distinguish differences between children, but the relative abundance of organisms may differ between the nasopharynx and lower airway in pediatric patients. Studies utilizing NP samples as surrogates for the lower airway should be interpreted with caution

    Correlation between the clinical severity of laryngomalacia and endoscopic findings

    Get PDF
    Objective: To correlate the clinical severity of laryngomalacia (LM) with endoscopic findings, swallowing evaluations and polysomnography in a cohort of patients. Method: We conducted a retrospective analysis between 2017-2018 on a cohort of patients diagnosed with upper airway obstruction (UAO), stridor, noisy breathing or laryngomalacia. This study took place at the Pediatric Pulmonology Department, Riley Children's Hospital, Indianapolis, United States of America. Results: There were 157 patients with laryngomalacia included in the study. Patients with severe LM were significantly younger than those with mild LM (p=0.0214) and moderate LM (p=0.0220). Subjects with type I of LM were significantly older than type III (p=0.0051). When associations were tested between polysomnogram (PSG) variables and clinical severity, there were significant associations with age at PSG. The overall apnea-hypopnea index (AHI) in mild (p=0.0103) and moderate (p=0.0242) were significantly lower than the severe group. The rapid eye movement (REM) AHI was significantly lower in moderate cases than severe (p=0.0134). The end-tidal carbon dioxide (EtCO2) peak was significantly lower in mild cases than severe (p=0.0141). The total sleep time (TST) peripheral capillary oxygen saturation (SpO2) 90% occurs in both mild (p=0.0197) and moderate (p=0.0498) were significantly lower than the severe group. Conclusions: The severity of the clinical manifestations of LM did not correlate with the different endoscopic types in our study. The presence of cyanosis was associated with type III LM. Rapid eye movement AHI and EtCO2 in polysomnogram were remained significantly associated with clinical severity

    Structure and Functions of Pediatric Aerodigestive Programs: A Consensus Statement

    Get PDF
    Aerodigestive programs provide coordinated interdisciplinary care to pediatric patients with complex congenital or acquired conditions affecting breathing, swallowing, and growth. Although there has been a proliferation of programs, as well as national meetings, interest groups and early research activity, there is, as of yet, no consensus definition of an aerodigestive patient, standardized structure, and functions of an aerodigestive program or a blueprint for research prioritization. The Delphi method was used by a multidisciplinary and multi-institutional panel of aerodigestive providers to obtain consensus on 4 broad content areas related to aerodigestive care: (1) definition of an aerodigestive patient, (2) essential construct and functions of an aerodigestive program, (3) identification of aerodigestive research priorities, and (4) evaluation and recognition of aerodigestive programs and future directions. After 3 iterations of survey, consensus was obtained by either a supermajority of 75% or stability in median ranking on 33 of 36 items. This included a standard definition of an aerodigestive patient, level of participation of specific pediatric disciplines in a program, essential components of the care cycle and functions of the program, feeding and swallowing assessment and therapy, procedural scope and volume, research priorities and outcome measures, certification, coding, and funding. We propose the first consensus definition of the aerodigestive care model with specific recommendations regarding associated personnel, infrastructure, research, and outcome measures. We hope that this may provide an initial framework to further standardize care, develop clinical guidelines, and improve outcomes for aerodigestive patients

    A 2-year-old girl with co-inherited cystic fibrosis and sickle cell-β+ thalassemia presenting with recurrent vaso-occlusive events during cystic fibrosis pulmonary exacerbations: a case report.

    Get PDF
    IntroductionThis is the first published report of a young girl with co-inherited sickle cell-β+ thalassemia and cystic fibrosis. Although a small subset of patients with co-inherited cystic fibrosis and other hemoglobinopathies have been reported, this patient developed early hematologic and pulmonary complications that were more severe than the previous cases. To assess pulmonary co-morbidities, we used infant pulmonary function testing through the raised volume rapid thoracoabdominal compression technique as both an established study of early cystic fibrosis and also as a newer study of mechanism for early sickle cell lung disease. This further serves as the first report of the raised volume rapid thoracoabdominal compression technique to determine raised volume forced expiratory flows and fractional lung volumes in a patient with a hemoglobinopathy.Case presentationA 2-year-old African-American girl with co-inherited cystic fibrosis and sickle cell-β+ thalassemia developed severe hematologic complications (recurrent vaso-occlusive events, hepatic sequestration, and acute chest syndrome) during periods of cystic fibrosis pulmonary exacerbations and weight loss. Because cystic fibrosis and sickle cell-β+ thalassemia both confer distinct patterns of pulmonary disease, infant pulmonary function testing with the raised volume rapid thoracoabdominal compression technique was used to define respiratory pathophysiology and guide treatment options. Infant pulmonary function testing data demonstrated moderate-to-severe lower airways obstruction, moderate air trapping, and no evidence of restrictive lung disease.ConclusionsInfant pulmonary function testing with the raised volume rapid thoracoabdominal compression technique guided therapy in this patient with cystic fibrosis and sickle cell-β+ thalassemia. Although this is an original case report on a unique patient, this case highlights the need to evaluate early respiratory pathophysiology in a broader population of young patients with hemoglobinopathies and screen those at risk for early pulmonary co-morbidities

    A 2-year-old girl with co-inherited cystic fibrosis and sickle cell-β+ thalassemia presenting with recurrent vaso-occlusive events during cystic fibrosis pulmonary exacerbations: a case report

    No full text
    INTRODUCTION: This is the first published report of a young girl with co-inherited sickle cell-β(+) thalassemia and cystic fibrosis. Although a small subset of patients with co-inherited cystic fibrosis and other hemoglobinopathies have been reported, this patient developed early hematologic and pulmonary complications that were more severe than the previous cases. To assess pulmonary co-morbidities, we used infant pulmonary function testing through the raised volume rapid thoracoabdominal compression technique as both an established study of early cystic fibrosis and also as a newer study of mechanism for early sickle cell lung disease. This further serves as the first report of the raised volume rapid thoracoabdominal compression technique to determine raised volume forced expiratory flows and fractional lung volumes in a patient with a hemoglobinopathy. CASE PRESENTATION: A 2-year-old African-American girl with co-inherited cystic fibrosis and sickle cell-β(+) thalassemia developed severe hematologic complications (recurrent vaso-occlusive events, hepatic sequestration, and acute chest syndrome) during periods of cystic fibrosis pulmonary exacerbations and weight loss. Because cystic fibrosis and sickle cell-β(+) thalassemia both confer distinct patterns of pulmonary disease, infant pulmonary function testing with the raised volume rapid thoracoabdominal compression technique was used to define respiratory pathophysiology and guide treatment options. Infant pulmonary function testing data demonstrated moderate-to-severe lower airways obstruction, moderate air trapping, and no evidence of restrictive lung disease. CONCLUSIONS: Infant pulmonary function testing with the raised volume rapid thoracoabdominal compression technique guided therapy in this patient with cystic fibrosis and sickle cell-β(+) thalassemia. Although this is an original case report on a unique patient, this case highlights the need to evaluate early respiratory pathophysiology in a broader population of young patients with hemoglobinopathies and screen those at risk for early pulmonary co-morbidities

    An official American thoracic society/european respiratory society workshop report: Evaluation of respiratory mechanics and function in the pediatric and neonatal intensive care units

    No full text
    Ready access to physiologic measures, including respiratory mechanics, lung volumes, and ventilation/perfusion inhomogeneity, could optimize the clinical management of the critically ill pediatric or neonatal patient and minimize lung injury. There are many techniques for measuring respiratory function in infants and children but very limited information on the technical ease and applicability of these tests in the pediatric and neonatal intensive care unit (PICU, NICU) environments. This report summarizes the proceedings of a 2011 American Thoracic Society Workshop critically reviewing techniques available for ventilated and spontaneously breathing infants and children in the ICU. It outlines for each test how readily it is performed at the bedside and how it may impact patient management as well as indicating future areas of potential research collaboration. From expert panel discussions and literature reviews, we conclude that many of the techniques can aid in optimizing respiratory support in the PICU and NICU, quantifying the effect of therapeutic interventions, and guiding ventilator weaning and extubation. Most techniques now have commercially available equipment for the PICU and NICU, and many can generate continuous data points to help with ventilator weaning and other interventions. Technical and validation studies in the PICU and NICU are published for the majority of techniques; some have been used as outcome measures in clinical trials, but few have been assessed specifically for their ability to improve clinical outcomes. Although they show considerable promise, these techniques still require further study in the PICU and NICU together with increased availability of commercial equipment before wider incorporation into daily clinical practic

    An Official American Thoracic Society/European Respiratory Society Workshop Report: Evaluation of Respiratory Mechanics and Function in the Pediatric and Neonatal Intensive Care Units

    No full text
    Ready access to physiologic measures, including respiratory mechanics, lung volumes, and ventilation/perfusion inhomogeneity, could optimize the clinical management of the critically ill pediatric or neonatal patient and minimize lung injury. There are many techniques for measuring respiratory function in infants and children but very limited information on the technical ease and applicability of these tests in the pediatric and neonatal intensive care unit (PICU, NICU) environments. This report summarizes the proceedings of a 2011 American Thoracic Society Workshop critically reviewing techniques available for ventilated and spontaneously breathing infants and children in the ICU. It outlines for each test how readily it is performed at the bedside and how it may impact patient management as well as indicating future areas of potential research collaboration. From expert panel discussions and literature reviews, we conclude that many of the techniques can aid in optimizing respiratory support in the PICU and NICU, quantifying the effect of therapeutic interventions, and guiding ventilator weaning and extubation. Most techniques now have commercially available equipment for the PICU and NICU, and many can generate continuous data points to help with ventilator weaning and other interventions. Technical and validation studies in the PICU and NICU are published for the majority of techniques; some have been used as outcome measures in clinical trials, but few have been assessed specifically for their ability to improve clinical outcomes. Although they show considerable promise, these techniques still require further study in the PICU and NICU together with increased availability of commercial equipment before wider incorporation into daily clinical practic
    corecore