23,939 research outputs found

    Implementable Quantum Bit-String Commitment Protocol

    Full text link
    Quantum bit-string commitment[A.Kent, Phys.Rev.Lett., 90, 237901 (2003)] or QBSC is a variant of bit commitment (BC). In this paper, we propose a new QBSC protocol that can be implemented using currently available technology, and prove its security under the same security criteria as discussed by Kent. QBSC is a generalization of BC, but has slightly weaker requirements, and our proposed protocol is not intended to break the no-go theorem of quantum BC.Comment: To appear in Phys. Rev. A., 9 pages, 2 figure

    Conceptual mechanization studies for a horizon definition spacecraft structures and thermal subsystem

    Get PDF
    Conceptual mechanization for horizon definition spacecraft structures and thermal subsystem - spin-stabilized, hexagonal cylinder for launch of two-stage Improved Delta /DSV-3N

    Fluorine-plus-proton reactions

    Get PDF
    The properties of certain energy levels in O16, F19, and Ne20 have been studied by observations on the alpha particles and inelastic protons from the bombardment of fluorine by protons. A high-resolution magnetic analysis of the alpha-particle groups to the 2+ and 1- levels in O16 from the F19(p, α)O16* reaction failed to reveal any doublet structure in these known levels. The angular distributions of the alpha-particle groups to these levels did not indicate degeneracy with a 2- level, nor did a search for new excited levels in O16 up to 8.7-Mev excitation reveal a 2- level. These results are not in agreement with the alpha-particle model of the O16 nucleus which predicts a 2- state close in energy to the 2+ state. Angular distributions of the alpha particles were measured at proton bombarding energies of 873, 935, 1290, 1355, and 1381 kev. The distributions at 1355 kev indicated that the corresponding Ne20 resonance level at 14.16 Mev has spin 2 and odd parity. The spin and parity assignments previously found for the other levels were confirmed. A study of the inelastic proton groups from the F19(p, p′)F19* reaction gave 108.8±0.8 and 196.0±1.4 kev for the excitation energies of the two lowest excited levels of F19. The cross sections at the 1431-kev resonance for these groups in the center-of-mass system were 0.187±0.015 barn for the first group and 0.007 ±0.002 barn for the second group. At 1381 kev the cross section was 0.0427±0.0040 barn for protons to the second excited level. Angular distributions of the proton groups were measured and, in conjunction with other studies made in this laboratory, resulted in spin and parity assignments of ½- and 3/2+ for the first and second excited states of F19, respectively

    Biotechnology and Economic Development: The Economic Benefits of Maize Streak Virus Tolerant Maize in Kenya

    Get PDF
    For countries that could not benefit from the Green Revolution due to heterogeneous and unfavorable biophysical environments, agricultural biotechnology potentially provides a means of improving the quality and quantity of agricultural production. This paper analyses some of the major issues relating to the utilization of biotechnology in Kenya. A partial equilibrium trade model is applied to Kenya's corn market to study the potential of genetically modified maize that is tolerant to the Maize Streak Virus. The model accounts for home production and consumption; the positive results of the welfare estimation are disaggregated between consumers, large and small Kenyan corn farms.Community/Rural/Urban Development, Research and Development/Tech Change/Emerging Technologies,

    Strong Optomechanical Squeezing of Light

    Full text link
    We create squeezed light by exploiting the quantum nature of the mechanical interaction between laser light and a membrane mechanical resonator embedded in an optical cavity. The radiation pressure shot noise (fluctuating optical force from quantum laser amplitude noise) induces resonator motion well above that of thermally driven motion. This motion imprints a phase shift on the laser light, hence correlating the amplitude and phase noise, a consequence of which is optical squeezing. We experimentally demonstrate strong and continuous optomechanical squeezing of 1.7 +/- 0.2 dB below the shot noise level. The peak level of squeezing measured near the mechanical resonance is well described by a model whose parameters are independently calibrated and that includes thermal motion of the membrane with no other classical noise sources.Comment: 12 pages, 8 figure
    • …
    corecore