27,121 research outputs found

    Unlocking Undergraduate Problem Solving

    Get PDF
    It is difficult to find good problems for undergraduates. In this article, we explore an interesting problem that can be used in virtually any mathematics course. We then offer natural generalizations, state and prove some related results, and ultimately end with several open problems suitable for undergraduate research. Finally, we attempt to shed some light on what makes a problem interesting

    Reconstructing the electron in a fractionalized quantum fluid

    Full text link
    The low energy physics of the fractional Hall liquid is described in terms quasiparticles that are qualitatively distinct from electrons. We show, however, that a long-lived electron-like quasiparticle also exists in the excitation spectrum: the state obtained by the application of an electron creation operator to a fractional quantum Hall ground state has a non-zero overlap with a complex, high energy bound state containing an odd number of composite-fermion quasiparticles. The electron annihilation operator similarly couples to a bound complex of composite-fermion holes. We predict that these bound states can be observed through a conductance resonance in experiments involving a tunneling of an external electron into the fractional quantum Hall liquid. A comment is made on the origin of the breakdown of the Fermi liquid paradigm in the fractional hall liquid.Comment: 5 pages, 2 figure

    Adequacy of the passive inflated falling sphere technique

    Get PDF
    Inflated falling sphere for high altitude sounding at radar sit

    First Steps Toward Change in Teacher Preparation for Elementary Science

    Get PDF
    Unless introductory undergraduate science classes for prospective elementary teachers actively incorporate the philosophy of inquiry-based learning called for in K-l2 science education refom little will change in elementary science education. Thus, at James Madison University, we have developed a new integrated science core curriculum called Understanding our World [1]. This course sequence was not only designed to fulfill general education science requirements. but also to focus on content areas our students will need to know as teachers. The objectives of these courses are based on the National Science Education Standards and Virginia’s Science Standards of Learning, including earth and space science, chemistry, physics, life sciences, and environmental science [2,3]. As an integrated package, this course sequence addresses basic science content, calculation skills, the philosophy and history of science, the process of how science is done, the role of science in society, and applications of computers and technology in science. Keeping in mind that students tend to teach in the same way they were taught, Understanding our World core classes embrace the concepts associated with reform in elementary math and science

    Atmospheric measurements over kwajalein using falling spheres

    Get PDF
    Atmosphere measurements using falling spheres tracked by rada

    Demonstration of efficient nonreciprocity in a microwave optomechanical circuit

    Full text link
    The ability to engineer nonreciprocal interactions is an essential tool in modern communication technology as well as a powerful resource for building quantum networks. Aside from large reverse isolation, a nonreciprocal device suitable for applications must also have high efficiency (low insertion loss) and low output noise. Recent theoretical and experimental studies have shown that nonreciprocal behavior can be achieved in optomechanical systems, but performance in these last two attributes has been limited. Here we demonstrate an efficient, frequency-converting microwave isolator based on the optomechanical interactions between electromagnetic fields and a mechanically compliant vacuum gap capacitor. We achieve simultaneous reverse isolation of more than 20 dB and insertion loss less than 1.5 dB over a bandwidth of 5 kHz. We characterize the nonreciprocal noise performance of the device, observing that the residual thermal noise from the mechanical environments is routed solely to the input of the isolator. Our measurements show quantitative agreement with a general coupled-mode theory. Unlike conventional isolators and circulators, these compact nonreciprocal devices do not require a static magnetic field, and they allow for dynamic control of the direction of isolation. With these advantages, similar devices could enable programmable, high-efficiency connections between disparate nodes of quantum networks, even efficiently bridging the microwave and optical domains.Comment: 9 pages, 6 figure

    1 um Excess Sources in the UKIDSS - I. Three T Dwarfs in the SDSS Southern Equatorial Stripe

    Get PDF
    We report the discovery of two field brown dwarfs, ULAS J0128-0041 and ULAS J0321+0051, and the rediscovery of ULAS J0226+0051 (IfA 0230-Z1), in the Sloan Digital Sky Survey (SDSS) southern equatorial stripe. They are found in the course of our follow-up observation program of 1 um excess sources in the United Kingdom Infrared Telescope Infrared Deep Sky Survey. The Gemini Multi-Object Spectrographs spectra at red optical wavelengths (6500-10500 A) are presented, which reveal that they are early-T dwarfs. The classification is also supported by their optical to near-infrared colors. It is noted that ULAS J0321+0051 is one of the faintest currently known T dwarfs. The estimated distances to the three objects are 50-110 pc, thus they are among the most distant field T dwarfs known. Dense temporal coverage of the target fields achieved by the SDSS-II Supernova Survey allows us to perform a simple time-series analysis, which leads to the finding of significant proper motions of 150-290 mas/yr or the transverse velocities of 40-100 km/s for ULAS J0128-0041 and ULAS J0226+0051. We also find that there are no detectable, long-term (a-few-year) brightness variations above a few times 0.1 mag for the two brown dwarfs.Comment: Accepted for publication in the Astronomical Journal; Typos correcte

    Application of Risk Informed Decision Making to Highly Reliable Three Dimensionally Woven Thermal Protection System for Mars Sample Return

    Get PDF
    The NASA Risk Informed Decision Making process is used to assess a trade space of three dimensionally woven thermal protection systems for application to the Mars Sample Return Earth Entry Vehicle. Candidate architectures are assessed based on mission assurance, technical development, cost, and schedule risk. Assessment methodology differed between the architectures, utilizing a four-point quantitative scale for mission assurance and technical development and highly tailored PERT techniques for cost and schedule. Risk results are presented, in addition to a review of RIDM effectiveness for this application
    corecore