1,156 research outputs found

    Survival, Development and Population Dynamics of \u3ci\u3eEmpoasca Fabae\u3c/i\u3e (Homoptera: Cicadellidae) on Three Legume Hosts

    Get PDF
    Survival and development of potato leafhopper, Empoasca fabae, nymphs were measured on alfalfa (Medicago sativa), birdsfoot trefoil (Lotus corniculatus), and red clover (Trifolium pratense). Survival was not significantly different among host plants (mean = 62%). There was no interaction between sex and host plant for developmental time. Males developed significantly faster than females. Developmental time was fastest on alfalfa, intermediate on trefoil, and slowest on red clover. Plots of alfalfa, trefoil, and red clover were planted to compare the seasonal abundance of the potato leafhopper in the three forages. Nymphs were more abundant in trefoil than in alfalfa and red clover late in July, but no differences occurred on the other sample dates. At their peak, adults were more abundant in alfalfa than in trefoil and red clover

    Long-Term Climate Trends and Northern Bobwhite Populations in South Texas

    Get PDF
    Because climate change and its associated weather changes may influence population trends of birds, we analyzed northern bobwhite (Colinus virginianus; bobwhite hereafter) age ratios and abundance in relation to climate trends during 1908-1997 in south Texas. Weather variables included regional mean temperature maxima for June, July, and August, and precipitation totals for autumn (Sep-Nov), winter (Dec-Feb), spring (Mar-May), and summer (Jun-Aug). Long-term temporal trends for these weather variables were estimated with a linear regression. Yearly weather data were used to predict bobwhite age ratios (juv/ad in autumn and winter) and abundance between 1908 and 1997 using neural network models. We compared these predictions with data available from various bobwhite surveys in south Texas over the period 1940-1999. Means for daily maximum temperature during summer declined at rates between 1.6 and 2.3°C/century. No temporal trends were detected for seasonal precipitation (1908-1997), age ratios (1940-1999), or abundance (1977-1998). Neural models developed independently to predict bobwhite age ratios and bobwhite abundance from weather data produced predictions that were consistent with each other. Years with high age ratios tended to coincide with or precede years of high abundance

    A Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants — liquid and gaseous petroleum compounds plus chemical dispersants — poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional “in-place, in-kind” restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, we provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    Once and Future Gulf of Mexico Ecosystem: Restoration Recommendations of an Expert Working Group

    Get PDF
    The Deepwater Horizon (DWH) well blowout released more petroleum hydrocarbons into the marine environment than any previous U.S. oil spill (4.9 million barrels), fouling marine life, damaging deep sea and shoreline habitats and causing closures of economically valuable fisheries in the Gulf of Mexico. A suite of pollutants—liquid and gaseous petroleum compounds plus chemical dispersants—poured into ecosystems that had already been stressed by overfishing, development and global climate change. Beyond the direct effects that were captured in dramatic photographs of oiled birds in the media, it is likely that there are subtle, delayed, indirect and potentially synergistic impacts of these widely dispersed, highly bioavailable and toxic hydrocarbons and chemical dispersants on marine life from pelicans to salt marsh grasses and to deep-sea animals. As tragic as the DWH blowout was, it has stimulated public interest in protecting this economically, socially and environmentally critical region. The 2010 Mabus Report, commissioned by President Barack Obama and written by the secretary of the Navy, provides a blueprint for restoring the Gulf that is bold, visionary and strategic. It is clear that we need not only to repair the damage left behind by the oil but also to go well beyond that to restore the anthropogenically stressed and declining Gulf ecosystems to prosperity-sustaining levels of historic productivity. For this report, we assembled a team of leading scientists with expertise in coastal and marine ecosystems and with experience in their restoration to identify strategies and specific actions that will revitalize and sustain the Gulf coastal economy. Because the DWH spill intervened in ecosystems that are intimately interconnected and already under stress, and will remain stressed from global climate change, we argue that restoration of the Gulf must go beyond the traditional "in-place, in-kind" restoration approach that targets specific damaged habitats or species. A sustainable restoration of the Gulf of Mexico after DWH must: 1. Recognize that ecosystem resilience has been compromised by multiple human interventions predating the DWH spill; 2. Acknowledge that significant future environmental change is inevitable and must be factored into restoration plans and actions for them to be durable; 3. Treat the Gulf as a complex and interconnected network of ecosystems from shoreline to deep sea; and 4. Recognize that human and ecosystem productivity in the Gulf are interdependent, and that human needs from and effects on the Gulf must be integral to restoration planning. With these principles in mind, the authors provide the scientific basis for a sustainable restoration program along three themes: 1. Assess and repair damage from DWH and other stresses on the Gulf; 2. Protect existing habitats and populations; and 3. Integrate sustainable human use with ecological processes in the Gulf of Mexico. Under these themes, 15 historically informed, adaptive, ecosystem-based restoration actions are presented to recover Gulf resources and rebuild the resilience of its ecosystem. The vision that guides our recommendations fundamentally imbeds the restoration actions within the context of the changing environment so as to achieve resilience of resources, human communities and the economy into the indefinite future

    The Third Gravitational Lensing Accuracy Testing (GREAT3) Challenge Handbook

    Full text link
    The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include realistically complex galaxy models based on high-resolution imaging from space; spatially varying, physically-motivated blurring kernel; and combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information.Comment: 30 pages, 13 figures, submitted for publication, with minor edits (v2) to address comments from the anonymous referee. Simulated data are available for download and participants can find more information at http://great3.projects.phys.ucl.ac.uk/leaderboard

    Translational treatment paradigm for managing non‐unions secondary to radiation injury utilizing adipose derived stem cells and angiogenic therapy

    Full text link
    BackgroundBony non‐unions arising in the aftermath of collateral radiation injury are commonly managed with vascularized free tissue transfers. Unfortunately, these procedures are invasive and fraught with attendant morbidities. This study investigated a novel, alternative treatment paradigm utilizing adipose‐derived stem cells (ASCs) combined with angiogenic deferoxamine (DFO) in the rat mandible.MethodsRats were exposed to a bioequivalent dose of radiation and mandibular osteotomy. Those exhibiting non‐unions were subsequently treated with surgical debridement alone or debridement plus combination therapy. Radiographic and biomechanical outcomes were assessed after healing.ResultsSignificant increases in biomechanical strength and radiographic metrics were observed in response to combination therapy (p < .05). Importantly, combined therapy enabled a 65% reduction in persisting non‐unions when compared to debridement alone.ConclusionWe support the continued investigation of this promising combination therapy in its potential translation for the management of radiation‐induced bony pathology. © 2015 Wiley Periodicals, Inc. Head Neck 38: E837–E843, 2016Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/137613/1/hed24110.pd
    • 

    corecore