11 research outputs found

    Phylogeny, Genome Size, and Chromosome Evolution of Asparagales

    Get PDF
    Asparagales are a diverse monophyletic order that has numerous species (ca. 50% of monocots) including important crop plants such as Allium, Asparagus, and Vanilla, and a host of ornamentals such as irises, hyacinths, and orchids. Historically, Asparagales have been of interest partly because of their fascinating chromosomal evolution. We examine the evolutionary dynamics of Asparagales genomes in an updated phylogenetic framework that combines analyses of seven gene regions (atp1, atpB, matK, ndhF, rbcL, trnL intron, and trnL-F intergenic spacer) for 79 taxa of Asparagales and outgroups. Asparagales genomes are evolutionarily labile for many characters, including chromosome number and genome size. The history and causes of variation in chromosome number and genome size remain unclear, primarily because of the lack of data in small clades in the phylogenetic tree and the lack of comparative genetic maps, apart from Allium and Asparagus. Genomic tools such as bacterial artificial chromosome (BAC) libraries should be developed, as both molecular cytogenetic markers and a source of nuclear genes that can be widely used by evolutionary biologists and plant breeders alike to decipher mechanisms of chromosomal evolution

    Mitochondrial Data in Monocot Phylologenetics

    Get PDF
    Mitochondrial sequences are an important source of data in animal phylogenetics, equivalent in importance to plastid sequences in plants. However, in recent years plant systematists have begun exploring the mitochondrial genome as a source of phylogenetically useful characters. The plant mitochondrial genome is renowned for its variability in size, structure, and gene organization, but this need not be of concern for the application of sequence data in phylogenetics. However, the incorporation of reverse transcribed mitochondrial genes ( processed paralogs ) and the recurring transfer of genes from the mitochondrion to the nucleus are evolutionary events that must be taken into account. RNA editing of mitochondrial genes is sometimes considered a problem in phylogenetic reconstruction, but we regard it only as a mechanism that may increase variability at edited sites and change the codon position bias accordingly. Additionally, edited sites may prove a valuable tool in identifying processed paralogs. An overview of genes and sequences used in phylogenetic studies of angiosperms is presented. In the monocots, a large amount of mitochondrial sequence data is being collected together with sequence data from plastid and nuclear genes, thus offering an opportunity to compare data from different genomic compartments. The mitochondrial and plastid data are incongruent when organelle gene trees are reconstructed. Possible reasons for the observed incongruence involve sampling of paralogous sequences and highly divergent substitution rates, potentially leading to longbranch attraction. The above problems are addressed in Acorales, Alismatales, Poales, Liliaceae, the Anthericum clade (in Agavaceae), and in some achlorophyllous taxa

    Multigene Analyses of Monocot Relationships

    Get PDF
    We present an analysis of supra-familial relationships of monocots based on a combined matrix of nuclear I8S and partial 26S rDNA, plastid atpB, matK, ndhF, and rbcL, and mitochondrial atp1 DNA sequences. Results are highly congruent with previous analyses and provide higher bootstrap support for nearly all relationships than in previously published analyses. Important changes to the results of previous work are a well-supported position of Petrosaviaceae as sister to all monocots above Acorales and Alismatales and much higher support for the commelinid clade. For the first time, the spine of the monocot tree has some bootstrap support, although support for paraphyly of liliids is still only low to moderate (79-82%). Dioscoreales and Pandanales are sister taxa (moderately supported, 87- 92%), and Asparagales are weakly supported (79%) as sister to the commelinids. Analysis of just the four plastid genes reveals that addition of data from the other two genomes contributes to generally better support for most clades, particularly along the spine. A new collection reveals that previous material of Petermannia was misidentified, and now Petermanniaceae should no longer be considered a synonym of Colchicaceae. Arachnitis (Corsiaceae) falls into Liliales, but its exact position is not well supported. Sciaphila (Triuridaceae) falls with Pandanales. Trithuria (Hydatellaceae) falls in Poales near Eriocaulaceae, Mayacaceae, and Xyridaceae, but until a complete set of genes are produced for this taxon, its placement will remain problematic. Within the commelinid clade, Dasypogonaceae are sister to Poales and Arecales sister to the rest of the commelinids, but these relationships are only weakly supported

    Occurrence of prolactinoma after estrogen treatment in a girl with constitutional tall stature.

    Get PDF
    In order to investigate interfamilial relationships of Liliales we analyzed a combined matrix of plastid rbcL, trnL intron, trnL-F intergenic spacer, matK, and ndhF, and mitochondrial atp1 DNA sequences. The results are generally congruent with previous broad analyses and provide higher bootstrap support for many relationships. Important changes relative to previous studies are the recognition of Petermanniaceae distinct from Colchicaceae and the tentative inclusion of Corsiaceae in the order. This brings the number of families in the order from nine to eleven. The additional data presented here strengthen the case for including Uvulariaceae in Colchicaceae and Calochortaceae in Liliaceae

    A proposal for a standardised protocol to barcode all land plants

    No full text
    We propose in this paper to use three regions of plastid DNA as a standard protocol for barcoding all land plants. We review the other markers that have been proposed and discuss their advantages and disadvantages. The low levels of variation in plastid DNA make three regions necessary; there are no plastid regions, coding or non-coding, that evolve as rapidly as mitochondrial DNA generally does in animals. We outline two, three-region options, (1) rpoC1, rpoB and matK or (2) rpoC1, matK and psbA-trnH as viable markers for land plant barcoding.Mark W. Chase, Robyn S. Cowan, Peter M. Hollingsworth, Cassio van den Berg, Santiago Madriñán, Gitte Petersen, Ole Seberg, Tina Jørgsensen, Kenneth M. Cameron, Mark Carine, Niklas Pedersen, Terry A.J. Hedderson, Ferozah Conrad, Gerardo A. Salazar, James E. Richardson, Michelle L. Hollingsworth, Timothy G. Barraclough, Laura Kelly & Mike Wilkinso

    Ecophysiology of Nitrogen-Fixing Systems

    No full text

    Abstracts of the 6th FECS Conference 1998 Lectures

    No full text
    International audienc
    corecore