1,146 research outputs found

    Using White Dish CMB Anisotropy Data to Probe Open and Flat-Lambda CDM Cosmogonies

    Full text link
    We use data from the White Dish experiment to set limits on cosmic microwave background radiation anisotropies in open and spatially-flat-Lambda cold dark matter cosmogonies. We account for the White Dish calibration uncertainty, and marginalize over the offset and gradient removed from the data. Our 2-sigma upper limits are larger than those derived previously. These upper limits are consistent with those derived from the COBECOBE-DMR data for all models tested.Comment: 17 pages of latex. Uses aasms4.sty. 4 figures included. Submitted to ApJ

    Deja Vu: semantics-aware recording and replay of high-speed eye tracking and interaction data to support cognitive studies of software engineering tasks—methodology and analyses

    Get PDF
    The paper introduces a fundamental technological problem with collecting high-speed eye tracking data while studying software engineering tasks in an integrated development environment. The use of eye trackers is quickly becoming an important means to study software developers and how they comprehend source code and locate bugs. High quality eye trackers can record upwards of 120 to 300 gaze points per second. However, it is not always possible to map each of these points to a line and column position in a source code file (in the presence of scrolling and file switching) in real time at data rates over 60 gaze points per second without data loss. Unfortunately, higher data rates are more desirable as they allow for finer granularity and more accurate study analyses. To alleviate this technological problem, a novel method for eye tracking data collection is presented. Instead of performing gaze analysis in real time, all telemetry (keystrokes, mouse movements, and eye tracker output) data during a study is recorded as it happens. Sessions are then replayed at a much slower speed allowing for ample time to map gaze point positions to the appropriate file, line, and column to perform additional analysis. A description of the method and corresponding tool, Deja Vu, is presented. An evaluation of the method and tool is conducted using three different eye trackers running at four different speeds (60 Hz, 120 Hz, 150 Hz, and 300 Hz). This timing evaluation is performed in Visual Studio, Eclipse, and Atom IDEs. Results show that Deja Vu can playback 100% of the data recordings, correctly mapping the gaze to corresponding elements, making it a well-founded and suitable post processing step for future eye tracking studies in software engineering. Finally, a proof of concept replication analysis of four tasks from two previous studies is performed. Due to using the Deja Vu approach, this replication resulted in richer collected data and improved on the number of distinct syntactic categories that gaze was mapped on in the code

    The 2dF galaxy redshift survey: near-infrared galaxy luminosity functions

    Get PDF
    We combine the Two Micron All Sky Survey (2MASS) Extended Source Catalogue and the 2dF Galaxy Redshift Survey to produce an infrared selected galaxy catalogue with 17173 measured redshifts. We use this extensive data set to estimate the galaxy luminosity functions in the J- and KS-bands. The luminosity functions are fairly well fitted by Schechter functions with parameters MJ*-5logh=-22.36+/-0.02, αJ=-0.93+/-0.04, ΦJ*=0.0104+/-0.0016h3Mpc-3 in the J-band and MKS*-5logh=-23.44+/-0.03, αKS=-0.96+/-0.05, ΦKS*=0.0108+/-0.0016h3Mpc-3 in the KS-band (2MASS Kron magnitudes). These parameters are derived assuming a cosmological model with Ω0=0.3 and Λ0=0.7. With data sets of this size, systematic rather than random errors are the dominant source of uncertainty in the determination of the luminosity function. We carry out a careful investigation of possible systematic effects in our data. The surface brightness distribution of the sample shows no evidence that significant numbers of low surface brightness or compact galaxies are missed by the survey. We estimate the present-day distributions of bJ-KS and J-KS colours as a function of the absolute magnitude and use models of the galaxy stellar populations, constrained by the observed optical and infrared colours, to infer the galaxy stellar mass function. Integrated over all galaxy masses, this yields a total mass fraction in stars (in units of the critical mass density) of Ωstarsh=(1.6+/-0.24)×10-3 for a Kennicutt initial mass function (IMF) and Ωstarsh=(2.9+/-0.43)×10-3 for a Salpeter IMF. These values are consistent with those inferred from observational estimates of the total star formation history of the Universe provided that dust extinction corrections are modest

    Grazing and No-Till Cropping Impacts on Nitrogen Retention in Dryland Agroecosystems

    Get PDF
    As the world\u27s population increases, marginal lands such as drylands are likely to become more important for food production. One proven strategy for improving crop production in drylands involves shifting from conventional tillage to no-till to increase water use efficiency, especially when this shift is coupled with more intensive crop rotations. Practices such as no-till that reduce soil disturbance and increase crop residues may promote C and N storage in soil organic matter, thus promoting N retention and reducing N losses. By sampling soils 15 yr after a N tracer addition, this study compared long-term soil N retention across several agricultural management strategies in current and converted shortgrass steppe ecosystems: grazed and ungrazed native grassland, occasionally mowed planted perennial grassland, and three cropping intensities of no-till dryland cropping. We also examined effects of the environmental variables site location and topography on N retention. Overall, the long-term soil N retention of \u3e18% in these managed semiarid ecosystems was high compared with published values for other cropped or grassland ecosystems. Cropping practices strongly influenced long-term N retention, with planted perennial grass systems retaining \u3e90% of N in soil compared with 30% for croplands. Grazing management, topography, and site location had smaller effects on long-term N retention. Estimated 15-yr N losses were low for intact and cropped systems. This work suggests that semiarid perennial grass ecosystems are highly N retentive and that increased intensity of semiarid land management can increase the amount of protein harvested without increasing N losses
    • …
    corecore