529 research outputs found

    Screening history of women with cervical cancer: a 6-year study in Aarhus, Denmark

    Get PDF
    To identify possible weaknesses in cervical screening in Aarhus County, 10 years after the programme was introduced, screening histories were examined. A major problem for the screening programme was that 31% of women were never screened and 61% under-screened, the latter group being significantly dominated by older women and high-stage tumours

    Suppression of HBV by Tenofovir in HBV/HIV coinfected patients : a systematic review and meta-analysis

    Get PDF
    Background: Hepatitis B coinfection is common in HIV-positive individuals and as antiretroviral therapy has made death due to AIDS less common, hepatitis has become increasingly important. Several drugs are available to treat hepatitis B. The most potent and the one with the lowest risk of resistance appears to be tenofovir (TDF). However there are several questions that remain unanswered regarding the use of TDF, including the proportion of patients that achieves suppression of HBV viral load and over what time, whether suppression is durable and whether prior treatment with other HBV-active drugs such as lamivudine, compromises the efficacy of TDF due to possible selection of resistant HBV strains. Methods: A systematic review and meta-analysis following PRISMA guidelines and using multilevel mixed effects logistic regression, stratified by prior and/or concomitant use of lamivudine and/or emtricitabine. Results: Data was available from 23 studies including 550 HBV/HIV coinfected patients treated with TDF. Follow up was for up to seven years but to ensure sufficient power the data analyses were limited to three years. The overall proportion achieving suppression of HBV replication was 57.4%, 79.0% and 85.6% at one, two and three years, respectively. No effect of prior or concomitant 3TC/FTC was shown. Virological rebound on TDF treatment was rare. Interpretation: TDF suppresses HBV to undetectable levels in the majority of HBV/HIV coinfected patients with the proportion fully suppressed continuing to increase during continuous treatment. Prior treatment with 3TC/FTC does not compromise efficacy of TDF treatment. The use of combination treatment with 3TC/FTC offers no significant benefit over TDF alone

    Astrobiological Complexity with Probabilistic Cellular Automata

    Full text link
    Search for extraterrestrial life and intelligence constitutes one of the major endeavors in science, but has yet been quantitatively modeled only rarely and in a cursory and superficial fashion. We argue that probabilistic cellular automata (PCA) represent the best quantitative framework for modeling astrobiological history of the Milky Way and its Galactic Habitable Zone. The relevant astrobiological parameters are to be modeled as the elements of the input probability matrix for the PCA kernel. With the underlying simplicity of the cellular automata constructs, this approach enables a quick analysis of large and ambiguous input parameters' space. We perform a simple clustering analysis of typical astrobiological histories and discuss the relevant boundary conditions of practical importance for planning and guiding actual empirical astrobiological and SETI projects. In addition to showing how the present framework is adaptable to more complex situations and updated observational databases from current and near-future space missions, we demonstrate how numerical results could offer a cautious rationale for continuation of practical SETI searches.Comment: 37 pages, 11 figures, 2 tables; added journal reference belo

    Characterization of 4-HNE Modified L-FABP Reveals Alterations in Structural and Functional Dynamics

    Get PDF
    4-Hydroxynonenal (4-HNE) is a reactive α,β-unsaturated aldehyde produced during oxidative stress and subsequent lipid peroxidation of polyunsaturated fatty acids. The reactivity of 4-HNE towards DNA and nucleophilic amino acids has been well established. In this report, using proteomic approaches, liver fatty acid-binding protein (L-FABP) is identified as a target for modification by 4-HNE. This lipid binding protein mediates the uptake and trafficking of hydrophobic ligands throughout cellular compartments. Ethanol caused a significant decrease in L-FABP protein (P<0.001) and mRNA (P<0.05), as well as increased poly-ubiquitinated L-FABP (P<0.001). Sites of 4-HNE adduction on mouse recombinant L-FABP were mapped using MALDI-TOF/TOF mass spectrometry on apo (Lys57 and Cys69) and holo (Lys6, Lys31, His43, Lys46, Lys57 and Cys69) L-FABP. The impact of 4-HNE adduction was found to occur in a concentration-dependent manner; affinity for the fluorescent ligand, anilinonaphthalene-8-sulfonic acid, was reduced from 0.347 µM to Kd1 = 0.395 µM and Kd2 = 34.20 µM. Saturation analyses revealed that capacity for ligand is reduced by approximately 50% when adducted by 4-HNE. Thermal stability curves of apo L-FABP was also found to be significantly affected by 4-HNE adduction (ΔTm = 5.44°C, P<0.01). Computational-based molecular modeling simulations of adducted protein revealed minor conformational changes in global protein structure of apo and holo L-FABP while more apparent differences were observed within the internal binding pocket, revealing reduced area and structural integrity. New solvent accessible portals on the periphery of the protein were observed following 4-HNE modification in both the apo and holo state, suggesting an adaptive response to carbonylation. The results from this study detail the dynamic process associated with L-FABP modification by 4-HNE and provide insight as to how alterations in structural integrity and ligand binding may a contributing factor in the pathogenesis of ALD

    Electric Field Exposure Triggers and Guides Formation of Pseudopod-Like Blebs in U937 Monocytes

    Get PDF
    We describe a new phenomenon of anodotropic pseudopod-like blebbing in U937 cells stimulated by nanosecond pulsed electric field (nsPEF). In contrast to regular, round-shaped blebs, which are often seen in response to cell damage, pseudopod-like blebs (PLBs) formed as longitudinal membrane protrusions toward anode. PLB length could exceed the cell diameter in 2 min of exposure to 60-ns, 10-kV/cm pulses delivered at 10-20 Hz. Both PLBs and round-shaped nsPEF-induced blebs could be efficiently inhibited by partial isosmotic replacement of bath NaCl for a larger solute (sucrose), thereby pointing to the colloid-osmotic water uptake as the principal driving force for bleb formation. In contrast to round-shaped blebs, PLBs retracted within several minutes after exposure. Cells treated with 1 nM of the actin polymerization blocker cytochalasin D were unable to form PLBs and instead produced stationary, spherical blebs with no elongation or retraction capacity. Live cell fluorescent actin tagging showed that during elongation actin promptly entered the PLB interior, forming bleb cortex and scaffold, which was not seen in stationary blebs. Overall, PLB formation was governed by both passive (physicochemical) effects of membrane permeabilization and active cytoskeleton assembly in the living cell. To a certain extent, PLB mimics the membrane extension in the process of cell migration and can be employed as a nonchemical model for studies of cytomechanics, membrane-cytoskeleton interaction and cell motility

    Primer to Voltage Imaging With ANNINE Dyes and Two-Photon Microscopy

    Get PDF
    ANNINE-6 and ANNINE-6plus are voltage-sensitive dyes that when combined with two-photon microscopy are ideal for recording of neuronal voltages in vivo, in both bulk loaded tissue and the dendrites of single neurons. Here, we describe in detail but for a broad audience the voltage sensing mechanism of fast voltage-sensitive dyes, with a focus on ANNINE dyes, and how voltage imaging can be optimized with one-photon and two-photon excitation. Under optimized imaging conditions the key strengths of ANNINE dyes are their high sensitivity (0.5%/mV), neglectable bleaching and phototoxicity, a linear response to membrane potential, and a temporal resolution which is faster than the optical imaging devices currently used in neurobiology (order of nanoseconds). ANNINE dyes in combination with two-photon microscopy allow depth-resolved voltage imaging in bulk loaded tissue to study average membrane voltage oscillations and sensory responses. Alternatively, if ANNINE-6plus is applied internally, supra and sub threshold voltage changes can be recorded from dendrites of single neurons in awake animals. Interestingly, in our experience ANNINE-6plus labeling is impressively stable in vivo, such that voltage imaging from single Purkinje neuron dendrites can be performed for 2 weeks after a single electroporation of the neuron. Finally, to maximize their potential for neuroscience studies, voltage imaging with ANNINE dyes and two-photon microscopy can be combined with electrophysiological recording, calcium imaging, and/or pharmacology, even in awake animals

    Recombinant human complement component C2 produced in a human cell line restores the classical complement pathway activity in-vitro: an alternative treatment for C2 deficiency diseases

    Get PDF
    Background: Complement C2 deficiency is the most common genetically determined complete complement deficiency and is associated with a number of diseases. Most prominent are the associations with recurrent serious infections in young children and the development of systemic lupus erythematosus (SLE) in adults. The links with these diseases reflect the important role complement C2 plays in both innate immunity and immune tolerance. Infusions with normal fresh frozen plasma for the treatment of associated disease have demonstrated therapeutic effects but so far protein replacement therapy has not been evaluated. Results: Human complement C2 was cloned and expressed in a mammalian cell line. The purity of recombinant human C2 (rhC2) was greater than 95% and it was characterized for stability and activity. It was sensitive to C1s cleavage and restored classical complement pathway activity in C2-deficient serum both in a complement activation ELISA and a hemolytic assay. Furthermore, rhC2 could increase C3 fragment deposition on the human pathogen Streptococcus pneumoniae in C2-deficient serum to levels equal to those with normal serum. Conclusions: Taken together these data suggest that recombinant human C2 can restore classical complement pathway activity and may serve as a potential therapeutic for recurring bacterial infections or SLE in C2-deficient patients

    Integrated mutation, copy number and expression profiling in resectable non-small cell lung cancer

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The aim of this study was to identify critical genes involved in non-small cell lung cancer (NSCLC) pathogenesis that may lead to a more complete understanding of this disease and identify novel molecular targets for use in the development of more effective therapies.</p> <p>Methods</p> <p>Both transcriptional and genomic profiling were performed on 69 resected NSCLC specimens and results correlated with mutational analyses and clinical data to identify genetic alterations associated with groups of interest.</p> <p>Results</p> <p>Combined analyses identified specific patterns of genetic alteration associated with adenocarcinoma vs. squamous differentiation; <it>KRAS </it>mutation; <it>TP53 </it>mutation, metastatic potential and disease recurrence and survival. Amplification of 3q was associated with mutations in <it>TP53 </it>in adenocarcinoma. A prognostic signature for disease recurrence, reflecting <it>KRAS </it>pathway activation, was validated in an independent test set.</p> <p>Conclusions</p> <p>These results may provide the first steps in identifying new predictive biomarkers and targets for novel therapies, thus improving outcomes for patients with this deadly disease.</p
    • …
    corecore