6 research outputs found

    AlzEye: longitudinal record-level linkage of ophthalmic imaging and hospital admissions of 353 157 patients in London, UK

    Get PDF
    PURPOSE: Retinal signatures of systemic disease ('oculomics') are increasingly being revealed through a combination of high-resolution ophthalmic imaging and sophisticated modelling strategies. Progress is currently limited not mainly by technical issues, but by the lack of large labelled datasets, a sine qua non for deep learning. Such data are derived from prospective epidemiological studies, in which retinal imaging is typically unimodal, cross-sectional, of modest number and relates to cohorts, which are not enriched with subpopulations of interest, such as those with systemic disease. We thus linked longitudinal multimodal retinal imaging from routinely collected National Health Service (NHS) data with systemic disease data from hospital admissions using a privacy-by-design third-party linkage approach. PARTICIPANTS: Between 1 January 2008 and 1 April 2018, 353 157 participants aged 40 years or older, who attended Moorfields Eye Hospital NHS Foundation Trust, a tertiary ophthalmic institution incorporating a principal central site, four district hubs and five satellite clinics in and around London, UK serving a catchment population of approximately six million people. FINDINGS TO DATE: Among the 353 157 individuals, 186 651 had a total of 1 337 711 Hospital Episode Statistics admitted patient care episodes. Systemic diagnoses recorded at these episodes include 12 022 patients with myocardial infarction, 11 735 with all-cause stroke and 13 363 with all-cause dementia. A total of 6 261 931 retinal images of seven different modalities and across three manufacturers were acquired from 1 54 830 patients. The majority of retinal images were retinal photographs (n=1 874 175) followed by optical coherence tomography (n=1 567 358). FUTURE PLANS: AlzEye combines the world's largest single institution retinal imaging database with nationally collected systemic data to create an exceptional large-scale, enriched cohort that reflects the diversity of the population served. First analyses will address cardiovascular diseases and dementia, with a view to identifying hidden retinal signatures that may lead to earlier detection and risk management of these life-threatening conditions

    A Systematic Quality Scoring Analysis to Assess Automated Cardiovascular Magnetic Resonance Segmentation Algorithms

    Get PDF
    BACKGROUND: The quantitative measures used to assess the performance of automated methods often do not reflect the clinical acceptability of contouring. A quality-based assessment of automated cardiac magnetic resonance (CMR) segmentation more relevant to clinical practice is therefore needed. OBJECTIVE: We propose a new method for assessing the quality of machine learning (ML) outputs. We evaluate the clinical utility of the proposed method as it is employed to systematically analyse the quality of an automated contouring algorithm. METHODS: A dataset of short-axis (SAX) cine CMR images from a clinically heterogeneous population (n = 217) were manually contoured by a team of experienced investigators. On the same images we derived automated contours using a ML algorithm. A contour quality scoring application randomly presented manual and automated contours to four blinded clinicians, who were asked to assign a quality score from a predefined rubric. Firstly, we analyzed the distribution of quality scores between the two contouring methods across all clinicians. Secondly, we analyzed the interobserver reliability between the raters. Finally, we examined whether there was a variation in scores based on the type of contour, SAX slice level, and underlying disease. RESULTS: The overall distribution of scores between the two methods was significantly different, with automated contours scoring better than the manual (OR (95% CI) = 1.17 (1.07–1.28), p = 0.001; n = 9401). There was substantial scoring agreement between raters for each contouring method independently, albeit it was significantly better for automated segmentation (automated: AC2 = 0.940, 95% CI, 0.937–0.943 vs manual: AC2 = 0.934, 95% CI, 0.931–0.937; p = 0.006). Next, the analysis of quality scores based on different factors was performed. Our approach helped identify trends patterns of lower segmentation quality as observed for left ventricle epicardial and basal contours with both methods. Similarly, significant differences in quality between the two methods were also found in dilated cardiomyopathy and hypertension. CONCLUSIONS: Our results confirm the ability of our systematic scoring analysis to determine the clinical acceptability of automated contours. This approach focused on the contours' clinical utility could ultimately improve clinicians' confidence in artificial intelligence and its acceptability in the clinical workflo

    Aortic flow is abnormal in HFpEF

    Get PDF
    Aims: Turbulent aortic flow makes the cardiovascular system less effective. It remains unknown if patients with heart failure with preserved ejection fraction (HFpEF) have disturbed aortic flow. This study sought to investigate advanced markers of aortic flow disturbances in HFpEF. Methods: This case-controlled observational study used four-dimensional flow cardiovascular magnetic resonance derived, two-dimensional phase-contrast reformatted plane data at an orthogonal plane just above the sino-tubular junction. We recruited 10 young healthy controls (HCs), 10 old HCs and 23 patients with HFpEF. We analysed average systolic aortic flow displacement (FDsavg), systolic flow reversal ratio (sFRR) and pulse wave velocity (PWV). In a sub-group analysis, we compared old HCs versus age-gender-matched HFpEF (N=10). Results: Differences were significant in mean age (P 17.7% achieved 74% sensitivity, 70% specificity for differentiating them. sFRR was notably higher in HFpEF (11±10% vs 7±6%, P 7.3% yielded 78% sensitivity, 70% specificity in differentiating these groups. In sub-group analysis, FDsavg remained distinctly elevated in HFpEF (22.4±9.7% vs 16±4.9%, P=0.029). FDsavg of >16% showed 100% sensitivity and 70% specificity (P=0.01). Similarly, sFRR remained significantly higher in HFpEF (11.3±9.5% vs 6.6±6.4%, P=0.007). A sFRR of >7.2% showed 100% sensitivity and 60% specificity (P<0.001). Conclusion: Aortic flow haemodynamics namely FDsavg and sFRR are significantly affected in ageing and HFpEF patients

    Validation of 2D flow MRI for helical and vortical flows

    Get PDF
    Purpose The main objective of this study was to develop two-dimensional (2D) phase contrast (PC) methods to quantify the helicity and vorticity of blood flow in the aortic root. Methods This proof-of-concept study used four-dimensional (4D) flow cardiovascular MR (4D flow CMR) data of five healthy controls, five patients with heart failure with preserved ejection fraction and five patients with aortic stenosis (AS). A PC through-plane generated by 4D flow data was treated as a 2D PC plane and compared with the original 4D flow. Visual assessment of flow vectors was used to assess helicity and vorticity. We quantified flow displacement (FD), systolic flow reversal ratio (sFRR) and rotational angle (RA) using 2D PC. Results For visual vortex flow presence near the inner curvature of the ascending aortic root on 4D flow CMR, sFRR demonstrated an area under the curve (AUC) of 0.955, p8% for sFRR had a sensitivity of 82% and specificity of 100% for visual vortex presence. In addition, the average late systolic FD, a marker of flow eccentricity, also demonstrated an AUC of 0.909, p<0.001 for visual vortex flow. Manual systolic rotational flow angle change (ΔsRA) demonstrated excellent association with semiautomated ΔsRA (r=0.99, 95% CI 0.9907 to 0.999, p<0.001). In reproducibility testing, average systolic FD (FDsavg) showed a minimal bias at 1.28% with a high intraclass correlation coefficient (ICC=0.92). Similarly, sFRR had a minimal bias of 1.14% with an ICC of 0.96. ΔsRA demonstrated an acceptable bias of 5.72°-and an ICC of 0.99. Conclusion 2D PC flow imaging can possibly quantify blood flow helicity (ΔRA) and vorticity (FRR). These imaging biomarkers of flow helicity and vorticity demonstrate high reproducibility for clinical adoption

    AlzEye: longitudinal record-level linkage of ophthalmic imaging and hospital admissions of 353 157 patients in London, UK.

    Get PDF
    PURPOSE Retinal signatures of systemic disease ('oculomics') are increasingly being revealed through a combination of high-resolution ophthalmic imaging and sophisticated modelling strategies. Progress is currently limited not mainly by technical issues, but by the lack of large labelled datasets, a sine qua non for deep learning. Such data are derived from prospective epidemiological studies, in which retinal imaging is typically unimodal, cross-sectional, of modest number and relates to cohorts, which are not enriched with subpopulations of interest, such as those with systemic disease. We thus linked longitudinal multimodal retinal imaging from routinely collected National Health Service (NHS) data with systemic disease data from hospital admissions using a privacy-by-design third-party linkage approach. PARTICIPANTS Between 1 January 2008 and 1 April 2018, 353 157 participants aged 40 years or older, who attended Moorfields Eye Hospital NHS Foundation Trust, a tertiary ophthalmic institution incorporating a principal central site, four district hubs and five satellite clinics in and around London, UK serving a catchment population of approximately six million people. FINDINGS TO DATE Among the 353 157 individuals, 186 651 had a total of 1 337 711 Hospital Episode Statistics admitted patient care episodes. Systemic diagnoses recorded at these episodes include 12 022 patients with myocardial infarction, 11 735 with all-cause stroke and 13 363 with all-cause dementia. A total of 6 261 931 retinal images of seven different modalities and across three manufacturers were acquired from 1 54 830 patients. The majority of retinal images were retinal photographs (n=1 874 175) followed by optical coherence tomography (n=1 567 358). FUTURE PLANS AlzEye combines the world's largest single institution retinal imaging database with nationally collected systemic data to create an exceptional large-scale, enriched cohort that reflects the diversity of the population served. First analyses will address cardiovascular diseases and dementia, with a view to identifying hidden retinal signatures that may lead to earlier detection and risk management of these life-threatening conditions
    corecore