126 research outputs found

    Metabolism of remimazolam in primary human hepatocytes during continuous long-term infusion in a 3-D bioreactor system

    Get PDF
    Background: Remimazolam is an ultra-short acting benzodiazepine under development for procedural sedation and general anesthesia. It is hydrolyzed by CES1 to an inactive metabolite (CNS7054). Purpose: In this study, the effect of continuous remimazolam exposure on its metabolism and on CES1 expression was investigated in a dynamic 3-D bioreactor culture model inoculated with primary human hepatocytes. Methods: Remimazolam was continuously infused into bioreactors for 5 days at a final concentration of 3,000 ng/ml (6.8 μM). In parallel, 2-D cultures were run with cells from the same donors, but with discontinuous exposure to remimazolam. Results: Daily measurement of clinical chemistry parameters (glucose, lactate, urea, ammonia, and liver enzymes) in culture supernatants indicated no noxious effect of remimazolam on hepatocyte integrity as compared to untreated controls. Concentrations of remimazolam reached steady-state values of around 250 ng/ml within 8 hours in 3-D bioreactors whereas in 2-D cultures remimazolam concentrations declined to almost zero within the same time frame. Levels of CNS7054 showed an inverse time-course reaching average values of 1,350 ng/ml in perfused 3-D bioreactors resp. 2,800 ng/ml in static 2-D cultures. Analysis of mRNA expression levels of CES1 indicated no changes in gene expression over the culture period. Conclusion: The results indicated a stable metabolism of remimazolam during 5 days of continuous exposure to clinically relevant concentrations of the drug. Moreover, there was no evidence for a harmful effect of remimazolam exposure on the integrity and metabolic activity of in vitro cultivated primary human hepatocytes

    Video-STM, LEED and X-ray diffraction investigations of PTCDA on graphite

    Get PDF
    Thin films of the organic molecule perylene-3,4,9,10-tetracarboxylic-dianhydride ("PTCDA") on graphite (0001) have been investigated from the mono- to the multilayer regime with low energy electron diffraction (LEED), X-ray-diffraction in Bragg-Brentano geometry, and high resolution scanning tunneling microscopy (STM). These different methods proved epitaxial growth in a coincident superstructure and yielded congruent results concerning details of the crystallographic structure of the epilayer. In addition it was possible to resolve submolecular structures in high resolution STM images; a comparison of the 10 resolved maxima of the tunneling current with the molecular structure leads us to question the conventional model description of tunneling

    Solulin reduces infarct volume and regulates gene-expression in transient middle cerebral artery occlusion in rats

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Thrombolysis after acute ischemic stroke has only proven to be beneficial in a subset of patients. The soluble recombinant analogue of human thrombomodulin, Solulin, was studied in an <it>in vivo </it>rat model of acute ischemic stroke.</p> <p>Methods</p> <p>Male SD rats were subjected to 2 hrs of transient middle cerebral artery occlusion (tMCAO). Rats treated with Solulin intravenously shortly before reperfusion were compared to rats receiving normal saline i.v. with respect to infarct volumes, neurological deficits and mortality. Gene expression of IL-6, IL-1β, TNF-α, MMP-9, CD11B and GFAP were semiquantitatively analyzed by rtPCR of the penumbra.</p> <p>Results</p> <p>24 hrs after reperfusion, rats were neurologically tested, euthanized and infarct volumes determined. Solulin significantly reduced mean total (p = 0.001), cortical (p = 0.002), and basal ganglia (p = 0.036) infarct volumes. Hippocampal infarct volumes (p = 0.191) were not significantly affected. Solulin significantly downregulated the expression of IL-1β (79%; p < 0.001), TNF-α (59%; p = 0.001), IL-6 (47%; p = 0.04), and CD11B (49%; p = 0.001) in the infarcted cortex compared to controls.</p> <p>Conclusions</p> <p>Solulin reduced mean total, cortical and basal ganglia infarct volumes and regulated a subset of cytokines and proteases after tMCAO suggesting the potency of this compound for therapeutic interventions.</p

    Simulation and sensitivities for a phased IceCube-Gen2 deployment

    Get PDF

    A next-generation optical sensor for IceCube-Gen2

    Get PDF

    Optimization of the optical array geometry for IceCube-Gen2

    Get PDF

    Concept Study of a Radio Array Embedded in a Deep Gen2-like Optical Array

    Get PDF

    Sensitivity studies for the IceCube-Gen2 radio array

    Get PDF
    corecore